PostgreSQL 18devel Documentation

The PostgreSQL Global Development Group

PostgreSQL 18devel Documentation
The PostgreSQL Global Development Group
Copyright © 19962025 The PostgreSQL Global Development Group

Legal Notice
PostgreSQL is Copyright © 1996-2025 by the PostgreSQL Global Development Group.
Postgres95 is Copyright © 1994-5 by the Regents of the University of California

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in al copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE
AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THEUNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMSANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED
HEREUNDER IS ON AN “AS-IS’ BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

PIEFACE .. e e e XXXl
1. What 1S POSIGrESQL? ...ttt ettt ettt e e XXXl
2. A Brief History of POSIGrESQLcccvuuiiiiiiiiee ittt XXX

2.1. The Berkeley POSTGRES ProjeCtc..uuviviiiiiieiiiiiiecciiieeece e XXXIV
2.2, POSIOrESOS ... XXXIV
2.3, POSIOrESQL ..ot XXXV
3. CONVENTIONS ...ttt ettt e e ettt e et e e e e et e e e ene s XXXV
4. Further InfOrmationcoouuiiiiiiii e XXXV
5. Bug Reporting GUIEIINESuuiiiiiiieeeei e XXXVi
5.1 1dentifying BUGSccevvnieiiiiieee ettt XXXVi
5.2, WHEL t0 REDPOIT ...ttt XXXVil
5.3. Where to REPOI BUGSooiveiiieiiiiiee e XXXVili
O N0 1o = TSP UP PP PPPPPTR PPN 1
L GEtING SEAEAveneeeei et 3
I 10 =] = (o EO ST SOP PP UPPPTTRUPPPIN 3
1.2. Architectural FUNDamMENtalSccouvuiiiiiiiee e 3
1.3. Creating @ Dal@haseoceevuiiiiii e 3
1.4, ACCESSING 8 DaADESEccvvneiiiii e 5
2. The SQL LBNGUBGEeevueeeeiiiieeeee ettt et e e e e 7
2.1 INEFOQUCTION ..ttt et e et e e 7
2.2, CONCEPLS ..eveeiet ettt ettt ettt 7
2.3. Creating aNew Talleoovunii e 7
2.4. Populating @ Table With ROWSccoiiiiiiiiiiieii e 8
25, QUEYING A TaADIE ...eiii e e 9
2.6. J0iNS BEWEEN TabIES ..ooviiiiiii e 11
2.7. AQOregate FUNCLIONScuuuneiiiii ettt e e e e 13
2.8 UPELES ...t 15
2.9, DEBLIONSeeiieieeeeie e 15
3. AGVANCED FEAIUMNESc.vei ettt ettt et e e s 17
130 B [L oo (8 1o o EO PP TOP PP 17
B2, VIBINS ettt 17
3.3 FOrEIgN KEBYS ..ot 17
B4 THANSACHIONS ...eeiti et ettt ettt ettt e e e e e e et e eene 18
3.5, WINAOW FUNCHIONSuiiiiii et 20
3.6, INNEITEANCE ...t e 23
7. CONCIUSION ..ttt et e e et eeena e 24
[1. The SQL LBNQUAJE ... eeeitieeeeite ettt ettt et e et e et e e e e et eeenaa s 25
4. SQL SYNEBX +evteeeetiee ettt e ettt e et e et et et e et e et e e e e e e e e aean 33
A1, LeXiCal SHUCKUMEcevveeieii ettt eaeas 33
4.2, ValUE EXPIrESSIONS ... eeieiieeeeiti e ettt ettt e et e e e 42
4.3. CaliNg FUNCLIONS ...ttt 56
5. Data DEFINITION ...ceeviiiiii e et et e 59
5.1 TADIE BASICS vt 59
5.2. DEFAUIT VAIUBS ...t 60
5.3, 1dentity COIUMNSuiiiiii et 61
5.4. Generated COIUMNScooeuiiiieii e 62
5.5, CONSITAINTS ...ttt ettt e e et e e e ne e 64
5.6. SYyStEM COIUMNS ...ttt e e 74
5.7. Modifying TableSccoiiiiieii e 74
5.8, PrIVIIEOES ... 77
5.9. ROW SeCUrity POIICIEScuuuiiiii e 82
B5.10. SCNEIMBS ...eeitiieeeeet et 88
511, INNEITANCE ...ttt et 93
5.12. Table Partitioningccuuuiiiiiiiiii e 96
5.13. FOrEIgN DaA ... ceeeeeiieeeeii ettt 110

PostgreSQL 18devel Documentation

5.14. Other Databhase ODJECLSiviveiiieiiiii e 110
5.15. Dependency TraCKingecvunieiiiieiii e e e e e e e e e e e aens 111
6. Data ManipUlationcccouuieiiiieii e e e e e e e e e 113
Lo 1 == g To [- - PN 113
(S 1o = 1] oo J T - L 114
(SRR D= 1= (] ool D - LN 115
6.4. Returning Data from Modified ROWScocouiiiiiiiiiiiiicci e, 115
2O N = 1= P 117
48 T @ = 4T 1 PP 117
7.2. Tahle EXPrESSIONSciviieiii e et e e e e e e e e e eaa s 117
7.3, SEIECE LISIS 1iiiiiiieiiiii ettt 133
7.4. Combining Queries (UNI ON, | NTERSECT, EXCEPT)coovvvvvivieiiiiieeeeeiennn. 135
7.5. Sorting ROWS (ORDER BY) ..uuiiiiiiiiiiciie e ea e 136
T76. LIM T and OFFSET ..oovniiiiiiiiieeiiii ettt e e e 137
T.7. VALUES LISES ittt e et e e s 137
7.8. W TH Queries (Common Table EXPreSSioNS)cc.uvevvnieiiiieeiiieeiiieeeieeeinns 138
S T DT = T Y/ o1 PP 148
8.1 NUMEIIC TYPES . tttiitiiee i ettt et et e e e e e e e e e e e e et e e et e e ean e eaes 149
8.2, MONEAY Ty DS ittt ittt 155
LI @ o= = Tot (= G Y/ o= PPN 156
8.4. BiNary Dafa TYPES c.uuuiiiieiii e et et e e e e e e e e e e e e e eeaens 158
8.5, DaAE/TIME TYPES ciituiiiieeii et e e et e e e e e e e e et e et e et e e aanaas 160
S = T To = g N Y/ o= 170
8.7. ENUMEIAEd TYPES oovuiiiiieiii et ettt e e e e e e e e e e e e aans 171
8.8. GEOMELNIC TYPES ... civtneiiieiiii e et e et e e e e e e e e e e e e e e e et e et e e aaeeaens 173
8.9. NEtWOrK AdAreSS TYPES ..ovuueiiieiit i eiiiee e e e e e e e e e e e e e e e e e e 175
8.10. Bit SIHNG TYPES .nniiveieii ettt et e e e e e e e e e eees 178
8.11. TeXt SEACH TYPES . oeen ittt e e 178
B.12. UUID TYPE - ieiitiieeeiit ettt ettt ettt e e et e e e et e e e eaanaeeees 181
ST Q1 R 1Y/ o= PP 182
ST N S @ N Y/ o=~ ST 184
S I N = Y P 194
8.16. COMPOSITE TYPES vvuteiitneeiieeei e eie e e e e et e e et e e et e e et e et e e et e e e aaeeeaneeeen 204
8.17. RANGE TYPES .. ueniiiiiie it 210
8.18. DOMAIN TYPES ..vuiitiieiii e et e e e e e et e e e e e e e et e et e e st e e e e e eaneeees 216
8.19. Object 1dentifier TYPES ..vuiiiii e e e e 217
8.20. PO | SN TP P ettt 219
ST T e =0 (o 0l N o1 PN 219
9. FUNCLIONS @N0 OPEIAIOIS ... cvvueiiiieieiee e ee e e e e e e e e e e e e et e et e et e e e eeens 222
1< I oo [or= B @ o= = (] £ 222
9.2. Comparison FUNctions and OPEratorsuvevvueeiiieeiiiieeiie e e e e eeens 223
9.3. Mathematical Functions and OPEratorscccuveevieeiiieeiieeeiiee e eeaeeeens 227
9.4. String FUNCtions and OPEratorsScevueerieeiiieeiii e e e e e e e eeanaeeees 235
9.5. Binary String Functions and OPEratorscccuuveiineeiiieiiieeeiieeeeieesaeeeens 246
9.6. Bit String Functions and OPEratorseveeuuieeriieeiiieeeiieeeieeeeeeaneeaens 250
A = 1 (= ¢ TN\ (o 11 o P 252
9.8. Data Type Formatting FUNCLIONSccoviiiiiiiiin e 271
9.9. Date/Time Functions and OPEratorsc..oveveueeeiieiiiieeiie e e e eeaeeeees 280
9.10. Enum SUpPOrt FUNCLIONSccuuiiiiieeiiecee e e e e e e 297
9.11. Geometric FUNCtions and OPEratorsSevvvuieeiieeeiieeiiieeeie e e e e aanaes 298
9.12. Network Address Functions and OpPEratorseevvvieviiieeiiieeiiiieeieeeaneens 305
9.13. Text Search Functions and OPEratorscoovvvveiiieeiiiieeiieeeeieeeei e eieeeen 308
9.14. UUID FUNCHIONSuiiieiiee et e ettt e et e e et e e e e s 314
9.15. XML FUNCLIONSciiiiiieeeii ettt e e et e et a e 315
9.16. JSON Functions and OPEratorscuuveeuuieiiiieeiieeeiiieeeiiee e e ene e e e eannns 330
9.17. Sequence Manipulation FUNCLIONSoovviiiiiiieeiii e 363
9.18. Conditional EXPreSSIONSucvvuniiiiieiiieeiiieeie e e e e e e e e e e e 364
9.19. Array FUNCtions and OPEratorsScc.ueeuuieeeinieeiieesiiieeiie e e e et eeaneeeens 367

PostgreSQL 18devel Documentation

9.20. Range/Multirange Functions and OPEratorscccuveevnieeineerinneeiiieennnens 371
9.21. Aggregate FUNCLIONScouuiiii i e e e e s 377
9.22. WINAOW FUNCLIONSuuueiiiiii et eeiin e 385
9.23. Merge SUPPOIt FUNCHIONSciiiiiii e ee e e e e e e e aene e 386
9.24. SUDQUENY EXPrESSIONS ...vuuiiiiieeiieiii e et e e et e e e e e e e e e e et e e st e e e eaneeeen 387
9.25. Row and Array COMPAIiSONSevuuieriineeiieeeieesieeeiieeataeeatneesteesanaaees 390
9.26. Set RetUrNiNg FUNCLIONSuuiiiiii e e e e 392
9.27. System Information Functions and OPEratorscoccueveveveevineeeineeennennn, 396
9.28. System Administration FUNCLIONSccuuieiiiiieiieeciie e 417
9.29. Trigger FUNCLIONSuuiii it e e e e e e e e e e eeaaeees 438
9.30. Event Trigger FUNCLIONScouuiiiiiii e e e e 439
9.31. Statistics INfOrmation FUNCLIONSvvviiiiiieiiiii e 442
O Y oL o017/ = o] o PN 444
FO. 1. OVEIVIBIW Luueiiiii ettt e e et s e e et s e e e et a e e e et aeeeeatnaeaeees 444
F0.2, O AIONS ittt et 445
L0 R ¥ o ox o] 3 LSS 449
O R 1 oI (o] - o = 453
10.5. UNI ON, CASE, and Related CONSIIUCESuuveviiiiieiiiiieeceiie e 454
10.6. SELECT OUtput COIUMNS ... covvieiiiieiii e e e e 455
T o (== USSP 457
00 O 1 1 oo (0 [1o ISP 457
2 1 o L= G Y/ o === P 458
11.3. MUItiCOIUMN INAEXES .. .ceeeviieeiei e 460
11.4. Indexes and ORDER BYcicuuuiiiiiiiiieiiiiiie ettt 461
11.5. Combining MUltiple INAEXESviiiiieiiieeie e 462
12.6. UNIQUE INAEXES ...vuiieeeii et e e e e e e e e e e e 463
11.7. INAEXES ON EXPrESSIONS ...vuiiiieeiiieeiieeei e et e e e e e e e e e e e et e e eaeeeanees 463
11.8. Partial INAEXESceevviiieiiii et eaans 464
11.9. Index-Only Scans and Covering INdeXeScoevvviiiiiiieiiie e eecieeeais 467
11.10. Operator Classes and Operator FamilieScccoevviviiiiiciiin e, 470
11.11. Indexes and CollationSoovvuuiiiiiiiiiiee e 471
11.12. Examining INdeX USAQEuvvvniiiiieiii e e e e e e e e e e 472
12, FUIl TEXE SEAICH .o 473
2 R 1 1 oo (0 1o SO PTTRSPP 473
12.2. TablesS @and INAEXESccevviieiiiiiie e 477
12.3. Controlling TexXt SEarchccuviiiiiiiii e 479
12.4. AddItional FEAIUMESuuiiiiiii e 486
D25, PaISErS .. ettt ettt ettt ettt 492
12.6. DICHONAITES ...ueieiiii et e ettt e e e e e et e e et e eeera s 493
12.7. Configuration EXamMPIEcouiiiiiiiiii e 503
12.8. Testing and Debugging Text SEarchccooovvveiiiiiiii e, 504
12.9. Preferred Index Types for Text Searchccovevviiiiiiiiiii e, 509
2250 O T 1= o ST o) oo o 510
o O I 1] = o) PP 513
13, ConCUrrenCy CONLIOlceee e e e e e e e e e aeas 515
G20 O 1 11 oo (0o 1o PSPPSR 515
13.2. Transaction ISOIAONcceuvnieiiiii e e e e 515
13.3. EXPlICIt LOCKING «.cvvueiiieeii e e e e e e e e e e eeen 521
13.4. Data Consistency Checks at the Application Levelcccccocoviviiieinnn. 527
13.5. Seridization Failure Handlingcccoeeviiiiiiiiicii e, 528
G T O V= =P 529
13.7. Locking and INAEXESuiivniei e 529
e (o0 7= 0= T T = PP 531
14.1. USING EXPLAIL N Looi e 531
14.2. Statistics Used by the Planner ..o 546
14.3. Controlling the Planner with Explicit JO N ClauseScc.oeevvvveiiinieinnnnnns 552
14.4. Populating @ Databasecc.ueiinieiiiieeie e e e e e e 554
14.5. NON-DUrable SEttiNGScvvvnieiiee e e e e eens 556

PostgreSQL 18devel Documentation

15, Parallel QUETY ...oviiieiii e e 558
15.1. How Parallel QUEry WOrKScoiviiiiii e 558

15.2. When Can Parallel Query Be USed?cocvvviiiiiiiiiiiiiiicec e 559

15.3. Parallel PIanscooovuiiiiiiieee e 560

15.4. Parallel SAfEtYooveeeiiieiiii e 562

RIS o V7= g AN 41T o T = (o o P 564
16. Installation from BiNArEScocuuuiiiiiiiiiei et 571
17. Installation from SOUrCE COUEuuiiiiiiii e e e 572
170, REQUITEIMENES ..uiiii e e e e e e e e e e e e e e et e e aa e e eanns 572

17.2. GELHNG thE SOUICEcouiiiiii e e 574

17.3. Building and Installation with Autoconf and Makecc.ccoeveiiniiins 574

17.4. Building and Installation with M@SONcciveiiiiiiiiiiiiiec e, 587

17.5. Post-INStallation SEIUPcvuueiini e 599

17.6. Supported Platformsoiiiiiiii e 601

17.7. Platform-Specific NOESiiii i e 601

18. Server Setup and OPEratioNoevuueiiiieiii e e e e e e 607
18.1. The PostgreSQL USEr ACCOUNLcvuuiiieiiieeeiieeei e e e e e e et e e e e eaaeeeens 607

18.2. Creating a Datahase CIUSLEYoiiiniiiiiiciie e 607

18.3. Starting the Databhase SErVErccouiiiiii i 609

18.4. Managing Kernel RESOUICEScvvuiiii i e e e e e e eae 613

18.5. Shutting DOWN the SEIVErcovuiiiii e 620

18.6. Upgrading a POStgreSQL CIUSLESrccvvueiiieiiieeeie e e e e 621

18.7. Preventing Server SPOOfiNg ...ccuueieieeiiieeii e e 624

18.8. ENCryption OPtioNSccvuiiiiieii e e e e e e e e e eans 625

18.9. Secure TCP/IP Connections with SSLccovviiiiiiiiiieecieecc e, 626
18.10. Secure TCP/IP Connections with GSSAPI Encryptionccoccvevevvnnenne. 630
18.11. Secure TCP/IP Connections with SSH Tunnelsccoovvveviiiiiiiinneeennn, 630
18.12. Registering Event Log on WINOWSc.cveiiieiiiieiiii e e 631

19. Server ConfigUIAtioniiiiieii e e e 633
19.1. SEtting ParamMeEterSivvi e e 633

19.2. Fil@ LOCAIIONS ..uueieeeiiee ettt e et e e et s e e et neeeeaa e eeeees 637

19.3. Connections and AUtNENtICALIONviiiiiiiiei e 638

19.4. Resource CoNSUMPLIONcvuiiiiiceii e e e e e e e e e e e e e et e e e eanas 645

19.5. WrIt€ ANEAH LOQ ..vviviiiii e 654

RS S = o) 1 o o 665

19.7. QUENY Planningccouniiiii i 672

19.8. Error Reporting and LOGGiNG ...ccvvuvernieeiieeiieeeiieeeieeeeiee e esineeeanneeennaas 680

19.9. RUN-TIME SEALISHCS ..evevvieeieie e e 694
19.20. VACUUMING .evuueiiieiit et et e e e e e e e e et e e et e e et e e e et e e et e e et eeaneeanans 696
19.11. Client Connection DEfALISocvevuiiieiiiiiiieces e 701
19.12. LOCK MaNagemENtuiiiiiieiiiieiii e e ee e e e e e e e e e e e e st e e e e eaaeees 712
19.13. Version and Platform Compatibilitycccoeeviiiiiiiiiiiiein e, 713

e e o T 0 | o 715
19.15. PreSat OPLiONS ...ccuuiiii i eiiiie e e e e e e e e e e e e e e e e e e et e e et e e e eeanns 716
19.16. CUStOMIZEA OPLIONSvvvieeieei e e e ean s 718
19.17. DEVEIOPEr OPLIONSvuiiiiieeiiieeii e e et e e e e e e e e e e aeans 718
19.18. SN0t OPLIONS . .cvvueeeiieeii e e e e e e e e e e e e e e e e e aaaeas 724

20. Client AULNENLICAIONuueieiiis e e e e e 725
20.1. The pg_hba. conf Filecccooiiiiii e 725

20.2. USEr NAIME MBS ...ttt 734

20.3. Authentication MethOSviiiiiiiiiii e 736

20.4. Trust AULNENEICAEIONvvuiiieii e 737

20.5. Password AUtNentiCatioNcovuuiiiiiiiiee e 737

20.6. GSSAPI AUtNENLICALION ...cevvviieieiii e 738
20.7. SSPI AUNENEICALION ...eeviiieeei e 740
20.8. Ident AULhENTICAIONccvvveeeeeii e e e e e e e e e eaens 740
20.9. Peer AULNENLICALIONcvieviiieiiii e e eaaens 741
20.10. LDAP AULhENtiCALIONeieveiieieiie et e s 741

Vi

PostgreSQL 18devel Documentation

21.

22.

23.

24.

25.

26.

27.

28.

29.

20.11. RADIUS AUtNENLICAIIONcevvviiiiiieeeeeeee e e e e e et e e e e e aeniaa s 745
20.12. Certificate AUENICALIONuiiiiiiie e 746
20.13. PAM AULheNtiCatioNoiieeeiiiiieii e e e e e 746
20.14. BSD AUhENtiCAtiONevvvviiieeeeeeeeeiiie e s e e e e eeeiie e e e e e e eeaar e e e eeeeeaes 746
20.15. OAuth Authorization/AUuthentiCationcooveviiiiiieiiiiiie e 747
20.16. Authentication Problemsviiiiiiiiiiiiiii e 749
DataDase ROIESceeiiiei et 750
21.1. Datahase ROIESuvuiiieeeiiiiie et 750
21.2. ROIE ALIDULES ... et eaees 751
21.3. ROIE MEMDBErSNIP . ive i 753
21.4. Dropping ROIESiiii e 754
21.5. Predefined ROIESccviiiii i e e e e e e e aaaee 755
21.6. FUNCLION SECUMLY .uuuiiiiieii e e e e e e e e e e e e e e et e e aa e eens 757
Managing Databasesccvueiiii i 758
22,1, OVEIVIBIW vttt ettt e s e e e e e e et s e e e e e e e e sata e e e e eeaeeannnes 758
22.2. Creating @ Databaseocvuuieii i 758
22.3. Template Databasesoevvnieiiiiciie e 759
22.4. Database COoNfigurationcc.eeiuiiiiiieeiii e e e e e e e e aes 761
22.5. Destroying a DatabhaSecccvuiiiiiiiiiie e 761
22.6. TADIESPACES ... cvve i 761
(oo 112 1o PP 764
PG T I o oz L= o] oo o AP 764
23.2. Coll@tion SUPPOITcieieeii et e e e e e e e et e e e e aaeeaens 769
23.3. CharaCter Set SUPPOITueiii e e e e e e e eees 779
Routine Database MaintenanCe TasKSveeeeriieriiiiiieeeiireee e e e eein e e eeiineeeeens 789
24.1. ROULINE VACUUMING ..uuiiiiiieiieeiieee e et e e e e e et e e et s e e aeeeaaaeeatn e esaneesnnas 789
24.2. ROULINE REINAEXING ...cvvueiiiieiii e e e e e e e e e e e e e eeaens 798
24.3. Log File MaNteNaNCeuuiiiieiiii e e e e e e e e e e e e e een 799
Backup and RESIOIEuuuiii e e 801
25. 1. SOL DUIMID .ottiiiiieeetee ettt s e e e e e e ettt s e e e e e e e e et e s e e e e e e e aeatanaaeeeeaeaenes 801
25.2. File System Level Backupc..oevviiiiiiiiiiiiiciiccee e 804
25.3. Continuous Archiving and Point-in-Time Recovery (PITR)cccvveenn.. 805
High Availability, Load Balancing, and Replicationcccoeeviiiiiiiieiiinecinens 817
26.1. Comparison of Different SOIUtioNScccuiviiiiieiiii e 817
26.2. Log-Shipping Standby SErVErScccvuiiiiiieiii e 820
26.3. FallOVEL ..oiiiiiiiii e e aaaaaaae 829
26.4, HOt StANADY ...vvvniieeiiiiieiee e s e e e e e e e e e e e eanaae 830
Monitoring Database ACHIVITYcouvniiiiiciii e 838
27.1. Standard UnNiX TOOIS ..ouvunieeiiiiieeeiii et 838
27.2. The Cumulative StatisticsS SYSteMccvvniiiiiiciie e 839
27.3. VIeWING LOCKS .. .couiiiii e e 881
27.4. Progress REPOMINGuiiveieiii e e e e e e e e e e e e e s e e aaeees 882
27.5. DYNAMIC TIaCiNG ..ovuueiiieiiiieiiieeeie e e e e e e e e e e e e e e s e e e e e aaeeanns 890
27.6. MoNitoring Disk USAQEuiiinieiiiiici e e e e et e e e 899
Reliability and the Write-AhEad LOgccvuiiiiiiiiiii e 902
2 = = T]) YRS 902
28.2. Data ChECKSUMSevvtieeeii ettt e et e e et e eeeaa e e eeee 904
28.3. Write-Ahead Logging (WAL) ...oouiiiiiie e 904
28.4. Asynchronous COMMITuieiuuieiiiieei e e e e e e e e e e e e eaneens 905
28.5. WAL Configurationc..ueeiuuioiiiieeiii e eee e e e e e e e e e e et e e ean e eeees 906
28.6. WAL INEEIMEIS ..vuiiiiiii ettt et e e e e et e eeees 909
oo Torz I == o) Lo 1 Lo o RN 911
A o o= 1o o PP 911
A S U 1= v] o)1 o o P 912
29.3. Logica Replication FalloVerccocoviiiiiiiiiii e 918
29,4, ROW FIlEIS .oiiiiiiie ettt e e e e 920
29.5. COIUMN LISES c.evvtieeiiii ettt e e e e et e e e eat e eeees 928
29.6. Generated Column RePlICationcoceviiiiiiiiiiieiic e 930

vii

PostgreSQL 18devel Documentation

P2 I A o | [T £ PP 932

29.8. RESIICHIONS ... eiieiieeeeii ettt e e et e e e et e e e e b 935

29.9. ATChITECIUIEeeiei e 936

P22 I (O 1Y o 411 (o 1 1o [P 937

P22 S ol) PP 937
29.12. Configuration SENGSuevvvneieiiee e e e e e e e e ean s 938
290,03, UPGIrade ... 939
29.14. QUICK SBLUD ... ieeiieee ettt et e e 945

30. Just-in-Time Compilation (JIT) ..ocuueiiinieiii e e e e e e e e 947
30.1. What IS JIT compilation?eiiiiiiiiiieii e 947

30.2. WHEN 10 JIT 2 oottt et e e e e e e eaees 947

G0 TG T @0)1 To 1= 1 (o] o U 949

30.4. EXENSIDIITY ooeeveee e 949

G I R L= | (= o T 1= =P 951
3 I I 0T 0 g To 1 ST = 951

31.2. TSt EVAIUBLION ..vuieiiiiiieeee ettt 955

31.3. Variant Comparison FilESccouiiiiiiiii e 957

I I A = £ 958

31.5. Test Coverage EXaminationc.uvveiuueeiinieiiiieeii e e e e e e e eaneeeeen 959

IV, Clent INEEIACES ...vu i e 961
32, 11BPG — C LIbrary ..o 966
32.1. Database Connection Control FUNCLIONScccuviiiiiiiiiieiiieeci e, 966

32.2. ConNeCtion StatuS FUNCLIONSuuuiiiiiiiieeeiii e eeeii e e e e e e e e 988

32.3. Command EXeCUtion FUNCLIONSooeviiiiieeiiiiieeeciie e 995

32.4. Asynchronous Command ProCESSINGuvvvveiiieriiiieeiieeeiiee e eaieeaenns 1011

32.5. PIPEiNE MOOEcoviiiiici e e 1016

32.6. Retrieving Query Results in Chunkscooovviiiiiiiiii e, 1020

32.7. Canceling QUENES iN ProgresSvuuueiieeiiieeiieeeiieeee e e e e e e e e e e eanneees 1021

32.8. The Fast-Path Interfacecoovuiiiiiiiii e 1026

32.9. Asynchronous NOEIfICatioNccuiveiiiiiiiii e 1027
32.10. Functions Associated with the COPY Commandc.ceeveviivneeriinnnnn. 1028
32.11. CONLrOl FUNCHIONS ...vuueeeiiie et e et e e 1032
32.12. Miscellaneous FUNCLIONSccuuuiieiiiiiie e 1035
32.13. NOLICE PrOCESSING ...vvvneiineeeiiieeie e et e e e e e e e e et s e et e e et e e st e e e aaeeeaneees 1039
32.14. EVENE SYSLOIM c.vuiieiiiii et 1040
32.15. Environment VariableSoiiiiiiiiiiiii e 1046
32.16. The Password Filecocuuiiiiiiiiecc e 1048
32.17. The Connection Service Fileooouuiiiiiiiiie e 1049
32.18. LDAP Lookup of Connection Parameterscceeuvvvveieeeiieeeiieeieeennnn, 1049
32.19. SSL SUPPOIT ..ottt 1050
32.20. OAULN SUPPOIT ... 1055
32.21. Behavior in Threaded Programsooevviiieiiiieiiiiccie e e e 1058
32.22. Building [ibpg Programsccouiiiiiiiiii e e e 1059
32.23. EXAMPIE PrOgramScvuieiiii e e e e e e e e e e et e e et e e et e e e e e aaneees 1060

I T IR (0 (I @ o= ox TP 1071
1C3C 00 I 10 o (8o 1o o PR 1071
33.2. Implementation FEAIUIESocvvuiiii e e 1071

33.3. CleNt INtEITACES .. oeivvii e 1071

33.4. Server-Side FUNCHIONSoiveeiiiee e e e s 1076

33.5. EXaMPIE Programuieiiiieiii e e e e e e e e et e e e e e e e 1077

34. ECPG — Embedded SQL N C ...oovvviiieiiiii e 1083
7 T I =T o o1 o | 1083

34.2. Managing Database CONNECLIONSccevuiiiiiieiiiieeii e e e e 1083

34.3. Running SQL COMMANGSccvuuniiiiieiiiii e e e e e e e e 1087

34.4. Using HOSt VariableScoouiiiiiiciie e 1090

34.5. DYNAMIC SQL .evviiiiiiiiieee et 1104

34.6. POLYPES LIbrarycovuniiiii e 1106

34.7. USING DESCIIPLOr ATEBScvvvnieiieeiii et e e e e e e e e e e e e e e aanas 1120

viii

PostgreSQL 18devel Documentation

34.8. Error Handlingccoueiiiiiiii e e e e e 1133
34.9. Preprocessor DITECHIVESuuiiiii e e e e e 1140
34.10. Processing Embedded SQL Programsc.eeveiiieiiineeiieeiiieeeieesins 1142
34.11. Library FUNCLIONScovviiii e e 1143
34.12. Large ObJECEScvuiiiii e et e e e e e e e e e e e e e e 1144
34.13. CH+ APPHCALIONS .. ccvvciii e e e 1145
34.14. Embedded SQL COMMANGAScvvuieiiiieiiiieecii e e e e e e e 1149
34.15. Informix Compatibility MOdecovviiiiiiiiii e, 1173
34.16. Oracle Compatibility MOdeccovviiiiiicii e 1188
7 I A 141 1= 1 4 7= PP 1188
35. The INformation SChEMAviiiiiie e 1191
35.1. The SChEM@ ... e 1191
L DT - B Y ST 1191
353.informati on_schema _catal og namecooooceveviiniiiniee e, 1192
354.adm nistrable role _authorizationsc..ccooeeiiiiiiiininennn, 1192
35.5. applicabl @ rol €S .o, 1192
35.6. At L TT DUL ES oo 1193
35.7. Char @Ct I S S ittt e 1195
35.8.check _constraint_routine_usageccoeveviieeiiiieiiinecinneeennn, 1196
35.9. CheCK _CONSErai NES oo 1196
35.10. COI T @t T ONS coviiiiiiiii e 1197
35.11.col l ati on_character_set _applicabilitycccooiiiiniinnin. 1197
35.12. COl UM_COl UMM_USAQE ..civvniiiii e 1198
35.13. COl UM_dOMBI N_USAQE ..civvniiiiii i e e e 1198
35.14. COl UNM_OPL i ONS oiviiiiii e e e 1199
35.15. COl UMM_Pri Vil €0€S oo 1199
35.16. COl UNM_UAL _USAQE ..iiivnieiiieiiie e e e e e e e eaaes 1200
35.17. COL UMMIS oo e 1200
35.18. constrai Nt _COl UNM_USAQJE ...uuiivvniiiiiieiiieee e e e e 1203
35.19. constraint_tabl e _uUSagecocceoveiiiiiiiiii i 1204
35.20.data_type priVvil €ges .coiiiiiiiii 1204
35.21. dOMBI N_CONSETai NT'S toviiiiiiiiii e e e 1205
35.22. dOMBI N_UAL _USAQE ..iiiveieiiieii e e e e e e e eaaes 1206
L2 T o] 112 U o K-S PP 1206
35.24. €l EIMENE L Y PES it 1208
35.25. eNabl €d 0l €S ..o 1210
35.26.forei gn_data wrapper_OptioNnscccoeveiiiiiiiiiiiiin e, 1210
35.27.forei gn_dat @ W apPer'S .iiiiiiiiii e 1211
35.28. forei gn_Server_Opti ONS ..ooiiiiiiiiiiiiiciie e 1211
35.290. f OF €I gN_SBI VI S 1oiiiiiiieiii et e e e e e e e e e e e e e aanaees 1212
35.30.foreign_table Optionsccooviiii i, 1212
35.3L.foreign_tabl €S .o 1212
35.32. KEY_COl UMN_USAQE ..iiviiiiiieiiiieeie e e e e e e e e e e e e e e eanes 1213
35,33, PAr AIMBL B S ittt 1214
3534 referential _constrainNts ...ooccoeeiiiiiiiiiii 1215
35.35. 10l €_COl UM_grant's ..oooouiiiiiiiiie e e 1216
35.36. 10l € routine_grant's ...cooeiiiii i 1217
35.37.role table grants ..o 1217
35.38. 10l €_UAL _grant'S ..oiiiiiiiiiiiciie e 1218
35.39. 10l €_USAQE_grantS ..iiiiiiiiiiii e e 1218
35.40. routi Ne_COl UNM_USAQE ..ovviiiiiiiiiii e 1219
3541 routiNe_PriVvil B0ES . 1220
35.42. rOULt i NE_FOUL I NE_USAQE .uuiivieiiiieieii e e e e e e e e e e 1220
35.43. 1 OUt i NE_SEQUENCE _USAQE ..cevvnierneeeinieeeieeriniereieerineesinsesanaesnnnes 1221
3544. routine_tabl @ USAge ...coovvviiiiiiii i, 1222
L L o U o 1= PP 1222
35.46. SCREMAL @ ooivviiieiiii e 1226
K AT Lo [DT =] o =3 PP 1227

PostgreSQL 18devel Documentation

35.48. SOl _F AL UM @S iviiii i 1228
3549.sql _inmplenmentation info ..o, 1228
35.50. SOl PAIt S civiiiii i 1229
35.5L. SOl ST ZI N v 1229
35.52. tabl e CoNStrai NtS ..o 1229
35.53. tabl @ Pri Vil €0ES .o 1230
3554 1 AD] €S coiiiii 1231
3555, Tt FANST OF ITB oo e 1231
35.56.triggered _update Col UMS ..ooooiiiiiiiiiiie e 1232
SNy A W e [0 =] =T 1233
35.58. Udt _Pri Vil €0ES oo 1234
35.59. USAQE _Pri Vil BOES i 1235
35.60. user _defined _tYPeS .oviiii i 1235
35.61. user _mappPi NG_OPLi ONS ...oiiiii e 1237
35.62. USEI _ITBPPI NUS wtueiitiiiiieeiii et e et e e e e e e e s e e e e e e e st eeaaeeaanaees 1237
35.63. Vi W _COl UMMN_USAQE .ivvniiiiiiiiii e e e e e 1238
35.64. Vi EBW I OUL i NE_USAQE ..vuiiiiiiiii e e e e e e e e et e e e e 1238
35.65. Vi ew tabl € USAQE .oioviiiii i 1239
3506, Vi BWS oiitiieeiiii e et e et e 1239
AV = L= . 0o = 0 01 411 oo P 1241
36. EXIENAING SQL ...evviiiiiiii et 1247
36.1. How Extensibility WOrksc.coooiiiiiiiiiii e 1247
36.2. The PostgreSQL TYPe SYSEM ...vuuiiiiieiieee e 1247
36.3. User-Defined FUNCLIONSoviiiiiieiiiiie e 1250
36.4. User-Defined ProCeAUMEScvvuuunieiiiiiieeeie e 1251
36.5. Query Language (SQL) FUNCLIONSccvvuieiiiiiii e e, 1251
36.6. Function Overloadingccoevuiiiiiiiiiie e 1268
36.7. Function Volatility CategOori€suveiiuieiiiiieiii e e e e e 1269
36.8. Procedural Language FUNCLIONSuvvvuiieiiii e eee e e e e e 1270
36.9. INternal FUNCLIONSiiiiiiiiiiiii e 1270
36.10. C-Language FUNCLIONScouuieiiii e e e e e 1271
36.11. Function Optimization INfOrmMationcccceuiviiiiieiiii e, 1297
36.12. User-Defined AQQregatesc.uuviiunieiiieiieeeee e e e e e e e e e 1299
36.13. USer-DefiNed TYPES ...uuiieeiieiiii ettt 1306
36.14. User-Defined OPeratOrscccuueiiiieiiieieieee e e e e e e 1310
36.15. Operator Optimization INfOrmMationcceceuiieiiiieiiii e, 1311
36.16. Interfacing EXteNSioNS t0 INAEXEScvvvciiiiiiiiec e 1314
36.17. Packaging Related Objects into an EXteNsioncccoeevvveviiiieiineennnn. 1328
36.18. Extension Building INfrastruCturecocccveeiiiiiiiiecie e, 1336
A I o o = N 1341
37.1. Overview of Trigger BEhaviorccoceviiiiiiiiiiic e 1341
37.2. Visibility of Data ChangeSoeeeiiiiiieiiieeie e 1344
37.3. Writing Trigger FUNCEIONS IN Covviiiiiii e 1345
37.4. A Complete Trigger EXampleccooueiiiiiiiii e 1347
G T o A T o (= £ 1351
38.1. Overview of Event Trigger BEhaViorcooevvieiiii i, 1351
38.2. Writing Event Trigger FUNCtionSin Coooiviiiiii i 1353
38.3. A Complete Event Trigger EXamplecooveiiiiiiiiiii e, 1354
38.4. A Table Rewrite Event Trigger EXampleooeviiiiiiiiiiiieciiiicce e 1355
38.5. A Database Login Event Trigger EXamplec.cooveviiiiiiiiciiiiccieeeiis 1356
39. THE RUIE SYSIEIM ... i e e e e 1358
39.1. ThE QUENY T8 it it eiii e et e e e e e e e e e e e an s 1358
39.2. Views and the RUIE SYyStEMcocvuiiiiiiii e 1360
39.3. MAErialiZEA VIBWSueieiiii e e e e e 1366
39.4. Rules on | NSERT, UPDATE, and DELETEccoovvvviiiiiiiiiiiecei e, 1369
39.5. RUIES and PriVIIEgESuuiiiie i 1380
39.6. Rules and Command SEEEUScoevvenieriiiiieiiiine et e i 1382
39.7. RUIES VEISUS THIQUEIS .evuueiiteeeieeeiie e e e e e e e e e e e e e et e e et e e e eanaas 1383

PostgreSQL 18devel Documentation

40. Procedural LanQUABOESueevunieeieeiiietiie e e eeesteeeae e st s eeat e e et e e et esaneaanaens 1386
40.1. Installing Procedural LangUagESccuevviieiieeiiiieciineeee e e e e 1386
41. PL/pgSQL — SQL Procedural LangUagecc.ueveunieiiiieiiiieeiineeineeeieenaneens 1389
I @Y= VRSP 1389
41.2. Structure of PL/PGSQLvvvnieiie e 1390
A1.3. DECIArAHONS ...ttt 1392
I d o (=== 0] 1399
41.5. BASIC SEALEIMENESuiiiieiiieeeiii et e et e et e e et e e et e e e e eaeens 1399
41.6. CONLTOl SITUCLUMNESieeeii et e et e e e e e e e eaenns 1407
A O 1 o = TP PTPTPPR 1422
41.8. TransaCtion ManagemeNtceeiuieeiiieeiiiie e e e e e e e e eaaes 1428
41.9. Errors ant MESSAJESuuueivneiiieiiiee e et e e e e e e et e e et e et e e e e e 1429
41.10. Trigger FUNCLIONSccuuiiiii e e e e e e e e e e e e e eees 1431
41.11. PL/pgSQL under the HOOdoeiviiiiiiiice e 1440
41.12. Tips for Developing in PL/PGSQLuovvvniiiiiciie e, 1444
41.13. Porting from Oracle PL/SQLccoviiiiiieiiieeeee e 1447
42. PL/Tcl — Tcl Procedural LangUageceeuueeiinieiiieiiie e eeeee e e e e aaens 1457
A T @Y= VPSP 1457
42.2. PL/Tcl Functions and ArgumMEeNtSccuuveviiieiieeiiiieeiiee e eeeiee e eeens 1457
42.3. Data Values in PLITCl oo 1459
42.4. Globa Datain PLITCl ..ouuiiiiiiii e 1459
42.5. Database AcCeSS From PL/TCl ...viviiiiieiii e 1460
42.6. Trigger FUNCLIONS iN PLITCl couviivici e 1462
42.7. Event Trigger FUNCtions in PL/TCl ...vvivniiii e, 1464
42.8. Error Handling in PL/TCl ...ocvniiiic e 1464
42.9. Explicit Subtransactions in PL/TClcooviiiiiiiiii e 1465
42.10. Transaction ManagemeNtooeiiieiiiieii e e e 1466
42.11. PL/Tcl CONfigUIationieueieiiiieeeieeeei e e e e e e e s e e e e e eeaen 1467
42.12. Tcl Procedure NEMESviiiiiiieeiiii et eeai e 1467
43. PL/Perl — Perl Procedural LanguUagecceuueeeiiieiiiieeiieeciiieeei et ee e e eaie e 1468
43.1. PL/Perl Functions and ArguMENESccuuieriiieiiieeeiieeiieeseeeeineeaaeens 1468
43.2. Data Values in PLIPErl ..o 1473
43.3. BUIlE-IN FUNCHIONS ...coeviiecc e 1473
43.4. Globa Values in PLIPENooiiiiiiece e 1478
43.5. Trusted and Untrusted PL/Per|oviiiiiiiiiiiiiiiieee e 1479
N T = I = 4 I I T o L= 1480
43.7. PL/Perl EVENt TIIQOEIS . ovvveiiiieiei e e e e e e e e e et e e e e e e e e eens 1482
43.8. PL/Perl Under the HOOoovviiiiiiiiii e 1482
44, PL/Python — Python Procedural Languageooevuvieiiiieiiiiieii e 1484
44.1. PL/Python FUNCHIONSccvviiiiici e 1484
AA.2. DAAVAIUBS ..o e e 1485
ZV R RS 1T] oo [D - - L 1491
44.4, Anonymous Code BIOCKSovvunieiiiieii e e 1491
445, Trigger FUNCHIONSiiiiiii e e e e aaa s 1491
A4.6. DAADASE ACCESS ...evvuieieiiiiee e e e e e et e e e e et eaaas 1492
44.7. EXplicit SUDLraNSaCioNSoovviiieiiiieii e e e e 1496
44.8. TransaCtion Managementceeiuieeiiieeiii e e e e e e e eaaes 1497
44.9. Utility FUNCHIONS ... e e e e 1497
44.10. Python 2 vs. Python 3 . ..o 1498
44.11. Environment VariableSoooviiiiiiiiii 1498
45, Server Programming INtErfaceooovviiiiiii e 1500
45.1. Interface FUNCLIONScivviieeiii et e eeea e eaes 1500
45.2. Interface SUPPOrt FUNCLIONScivv i e e e 1542
45.3. Memory Managementc.vvuviriiiiiniee e 1551
45.4. TransaCtion Managementcveiuiieeeiieeiiiie e e e e e e e eaaes 1561
45,5, Visibility of Data Changesccuuveiiiiiiiiiiiii e 1564
5.6, EXAMPIES ...iieciii e 1564
46. Background WOTKEr PrOCESSESc.uuiiiiieiiiieiiiee e ee e e e e e e e et e e e aanas 1568

Xi

PostgreSQL 18devel Documentation

A oo o= I D<o [o [P 1572
47.1. Logical Decoding EXampPleScouvniiiiiiiiii i 1572
47.2. Logical Decoding CONCEPLSuueviuneeiiieiiiiieeiieeeieeeeiee e s e e e eaaeees 1576
47.3. Streaming Replication Protocol Interfacecovveviiviiiiiciiiiiiieeeeeenn, 1578
47.4. Logical Decoding SQL INtErfaceccuuvvviiiiiiiiieii e 1578
47.5. System Catalogs Related to Logical Decodingcooevvveevieiiiieiinneennnn. 1578
47.6. Logical Decoding OUtput PIUGINSccuviiiiiiieeiii e ee e e 1579
47.7. Logical Decoding OULPUL WIHLErSuuiviiiiiii e 1587
47.8. Synchronous Replication Support for Logical Decodingccocevvueennnn. 1587
47.9. Streaming of Large Transactions for Logical Decodingcccoeevvvnnnenn. 1587
47.10. Two-phase Commit Support for Logical Decodingcccevvveviieeinnnnns 1589

48. Replication Progress TraCkingciuuieiiieiiiieeie e e e e e e e e e e e e eaneens 1590

49, Archive MOUIESoeviieiiiii e e et e e e ea e eees 1591
49.1. Initialization FUNCLIONSuuuiiiiiiiiei e 1591
49.2. Archive Module Callbackscoveeiiiiiiiiiiiiieecii e 1591

50. OAUth Validator MOAUIESuiiiiiiieiiii e 1594
50.1. Safely Designing a Validator Moduleccoveviiiiiiiieiiieciecece e 1594
50.2. Initialization FUNCHIONScvvvviiieeeii e e s 1596
50.3. OAuth Validator Callbackscoeuuuiiiiiiiiiiiiiiiii e 1597

VL REFBIBNCE ... ettt et et e e e e e e 1599

S @ I o 41097 o 1604
A B RT ittt 1608
ALTER AGGREGATE ...ttt ettt e et e eeeaanns 1609
ALTER COLLATION .uuiiiiiii ettt e e e et e e e e s 1611
ALTER CONVERSIONooiiiiiiiiiiieiiii ettt e et eeaae s 1614
ALTER DATABASE ..o 1616
ALTER DEFAULT PRIVILEGESccoiiiiiiiiii e 1619
ALTER DOMAIN L.t e e 1623
ALTER EVENT TRIGGERcccuuiiiiiiiiiieiiiie et 1627
ALTER EXTENSION ...ouiiiiiiiiieiiiie ettt e e 1628
ALTER FOREIGN DATA WRAPPERcccuuiiiiiiiiiieiiiii e 1632
ALTER FOREIGN TABLE ...cootiiiiiiii et 1634
ALTER FUNCTION L.uiiiiiiieeee et e e e e 1639
ALTER GROUP ..ottt ettt e e et e eaeaans 1643
ALTER INDEX ...iiiiiiiieieis ettt et e e et e e e aan s 1645
ALTER LANGUAGE ..ottt 1648
ALTER LARGE OBUJECT ...ouuiiiiiiiiieiiiiaie et s et e et e et ea et e e e eane e 1649
ALTER MATERIALIZED VIEWcooiiiiiiiiiiie e 1650
ALTER OPERATOR ...ttt e et e e ea e e eees 1652
ALTER OPERATOR CLASS ...ttt ettt eeaeens 1654
ALTER OPERATOR FAMILY oottt 1655
ALTER POLICY ittt e e e s 1659
ALTER PROCEDUREcuiiiiiiiiiee ittt 1661
ALTER PUBLICATION ..ottt 1664
ALTER ROLE ...oiiiiiii ettt 1667
ALTER ROUTINE ...ttt e e e e aai e e e eeans 1671
ALTER RULE ..ottt 1673
ALTER SCHEMA ..o et e e e eeeaa e eaes 1674
ALTER SEQUENCE ..ottt 1675
ALTER SERVER ...ttt 1678
ALTER STATISTICS ... 1680
ALTER SUBSCRIPTION ...coiiiiiiiiiiieiiiiiie ettt e e e eeeaenns 1681
ALTER SYSTEM ..ottt e s 1685
ALTER TABLE ... 1687
ALTER TABLESPACE ..ottt 1706
ALTER TEXT SEARCH CONFIGURATIONcoiiiiiiiieiiiiiiieeeiiiieeeeeiin e 1708
ALTER TEXT SEARCH DICTIONARY ...uiiiiiiiiiiiiiiiieeeeii e 1710
ALTER TEXT SEARCH PARSERccoviiiiiiiiii e 1712

Xii

PostgreSQL 18devel Documentation

ALTER TEXT SEARCH TEMPLATE ...t 1713
ALTER TRIGGER ...t 1714
ALTER TYPE ..o 1716
ALTER USER ..o 1721
ALTER USER MAPPING ..ot 1722
ALTER VIEW .o 1723
ANALYZE ..o 1725
BEGIN oo 1729
CALL o 1731
CHECKPOINT .t 1733
L OSE . 1734
CLUSTER ..o 1735
COMMENT Lo 1738
COMMIT e 1743
COMMIT PREPAREDccoiiiiiiiiiiiii e 1744
GO Y 1745
CREATE ACCESS METHODccuiiiiiiiiiiicii e 1756
CREATE AGGREGATE ... 1757
CREATE CAST o 1765
CREATE COLLATION L..uiiiiiiiiiiiii e 1769
CREATE CONVERSION ..ottt 1772
CREATE DATABASE ..o 1774
CREATE DOMAIN ..ot 1779
CREATE EVENT TRIGGERoiiiiiiiiiiii e 1782
CREATE EXTENSIONooiiiiiiii e 1784
CREATE FOREIGN DATA WRAPPERcooiiiiii 1787
CREATE FOREIGN TABLE ..o 1789
CREATE FUNCTION L..oiiiiiiiiiici e 1795
CREATE GROUP ..ottt 1804
CREATE INDEX ...t 1805
CREATE LANGUAGE ... 1814
CREATE MATERIALIZED VIEW ... 1817
CREATE OPERATOR ...ttt 1819
CREATE OPERATOR CLASS ...t 1822
CREATE OPERATOR FAMILY ..o 1825
CREATE POLICY .ot 1826
CREATE PROCEDUREcoiiiiiiiii e 1832
CREATE PUBLICATION ...ttt 1836
CREATE ROLE ...oiiii e 1841
CREATE RULE ...ooi e 1846
CREATE SCHEMA ..o 1849
CREATE SEQUENCEciiiiiiiiiiic e 1852
CREATE SERVER ...t 1856
CREATE STATISTICS ... 1858
CREATE SUBSCRIPTIONouiiiiiiiiiii e 1862
CREATE TABLE ... 1868
CREATE TABLE AS ... 1892
CREATE TABLESPACE ... 1895
CREATE TEXT SEARCH CONFIGURATIONcociiiiiiiiiiiic e, 1897
CREATE TEXT SEARCH DICTIONARY ..ot 1898
CREATE TEXT SEARCH PARSER ... 1900
CREATE TEXT SEARCH TEMPLATE ..o, 1902
CREATE TRANSFORMoiiiiiiiiiii e 1903
CREATE TRIGGER ..ot 1905
CREATE TYPE .o 1912
CREATE USER ..o 1921
CREATE USER MAPPINGiiiiiiiii e 1922
CREATE VIEW ..ot 1924

Xiii

PostgreSQL 18devel Documentation

DEALLOCATE ..o 1930
DECLARE ..o 1931
DELETE . o 1935
DISCARD ...t 1939
DO e 1940
DROP ACCESS METHODcoviiiiiiiiiiiicii e 1942
DROP AGGREGATE ...t 1943
DROP CAST oo 1945
DROP COLLATION .ottt 1946
DROP CONVERSIONcouiiiiiiiiiiciii e 1947
DROP DATABASE ..o 1948
DROP DOMAIN .ot 1949
DROP EVENT TRIGGERcciiiiiiiiiii e 1950
DROP EXTENSION ...coiiiiiiiiiici e 1951
DROP FOREIGN DATA WRAPPERccociiiiii e, 1952
DROP FOREIGN TABLEooiiiii e 1953
DROP FUNCTION ..ottt 1954
DROP GROUP ...ttt 1956
DROP INDEX ..ottt 1957
DROP LANGUAGE ... oot 1959
DROP MATERIALIZED VIEW ..o 1960
DROP OPERATOR ...ttt 1961
DROP OPERATOR CLASS ..o 1963
DROP OPERATOR FAMILY ouiiiiiiii e 1965
DROP OWNEDoiiiiiiiiiiiii e 1967
DROP POLICY ..ottt e 1968
DROP PROCEDUREiiiiiiiic e 1969
DROP PUBLICATION ..ottt 1972
DROP ROLE ..ot 1973
DROP ROUTINE ...coiiiiiiiiiici et 1974
DROP RULE ..ot 1976
DROP SCHEMA ... 1977
DROP SEQUENCEcoiiiiiiiii e 1978
DROP SERVER ...t 1979
DROP STATISTICS ... 1980
DROP SUBSCRIPTION ..ottt 1981
DROP TABLE ... 1983
DROP TABLESPACE ... 1984
DROP TEXT SEARCH CONFIGURATIONooivviiiiiiiiiiiiiec e 1985
DROP TEXT SEARCH DICTIONARY ...cooiiiiiiiiiii e 1986
DROP TEXT SEARCH PARSER ..o 1987
DROP TEXT SEARCH TEMPLATE ..o, 1988
DROP TRANSFORM ...ttt 1989
DROP TRIGGERouiiiiiiiiiiii e 1990
DROP TYPE ..o 1991
DROP USERoiiiiiiiiiii e 1992
DROP USER MAPPINGouiiiiiiii e 1993
DROP VIEW ..o 1994
END o 1995
EXECUTE .o 1996
EXPLAIN Lo 1997
FET CH 2004
GRAIN T 2008
IMPORT FOREIGN SCHEMA ...t 2014
INSERT .o 2016
LISTEN oo 2024
LOAD o 2026
LOCK i 2027

Xiv

PostgreSQL 18devel Documentation

IMERGE ... ittt et et e e ae 2030
MOV E oottt aaans 2037
N[O 1 1 PP 2039
PREPAREottt 2042
PREPARE TRANSACTION ...ttt e et e et e e 2045
REASSIGN OWNEDuiiiiiiiieiiiiie ettt et eeea e e enenns 2047
REFRESH MATERIALIZED VIEWouiiiiiiiiieeis e 2048
REINDEX ... ittt e e e e et e e e et e e e e aaa s 2050
RELEASE SAVEPOINT ..ottt e s 2055
S PP 2057
REVOKE ..ot 2058
@ I I ¥ L 1 TSP 2063
ROLLBACK PREPAREDcuiiiiiiiiiiiiiia ettt e e e eeeens 2064
ROLLBACK TO SAVEPOINT ...ttt e e e 2065
SAVEPOINT Lottt e e e e e e et e e e e 2067
SECURITY LABEL ..ovtiiiiii e 2069
SE L T i e e 2072
SELECT INTO ittt e et e e et e e et e e e eanns 2094
SE T e e 2096
SET CONSTRAINTS ..ottt e e e e e eaees 2099
S I (O PP 2100
SET SESSION AUTHORIZATION ...uuiiiiiiiieeiiii et 2102
SET TRANSACTION ..ttt ettt e e e e et e e e ene e eees 2104
SHOW e 2107
START TRANSACTION ...ouiiiiiiiiieee e e e 2109
TRUNCATE ..ottt e e e e e e e e ara s 2110
UNLISTEN L.t e e e et e et e e e ena s 2112
L N I PSP 2114
VACUUM L. e e e e e et e e e et e e e eat e aeee 2120
VALUES .. et e et et aaae 2125
I1. PostgreSQL Client APPlICAIONSuueiiiieiii e e e e 2128
CIUSLEIAD ..o e 2129
(o= 1= 0| o ISR 2132
(0= (S T PP 2136
o1 0] 0o | o S 2141
(01 0] 11 P 2144
1< 0¢ oo PP PP 2147
1o I 1.1 1= P 2150
PG _DESEDACKUD ... 2156
070170 o TSN 2165
PY_COMDINEDACKUD ... ivvieciii e e e e e e e e e e e e e e eenas 2190
o100) o 2193
o700 L0 o TP 2196
PO AUMPAIL ..o 2212
[T TS (== |V N 2220
[T T = o= AV L=V 2222
[oTo T (= o1/ oo o= N 2227
10 (== (0] (PP PPRPPPRPRN 2231
PY_VENTYDACKUD ..veeee e 2242
01 o | RN 2245
=T 070 1= | o TP 2292
(2= e U 1H 0 o o PSP 2296
[11. PostgreSQL Server APPlCatiONScvuuiiiiiieeii e e e e e e e e 2301
TNTEAD e e 2302
PY_arChiVECIEaNUD i 2308
1o e 0= S 041N 2310
[oTo T w0011 0] Lo =1 - PN 2312
PO_CreateSUDSCIIDENiit i e e 2313

XV

PostgreSQL 18devel Documentation

oo N | S 2318
Lo T = = A1 | 2324
o To T (=111 o P 2328
Lo T (=S)Y 1 2332
o To T === A (142 Vo 2333
o100 oo =" [TP 2337
o102z Lo L1 3o o 2348
Lo LTz FS U 0= 2352
105 0 === PPN 2353
RV I 1 1= 0= PSP 2360
51. Overview of PoStgreSQL INtErNalScouuiviiiiiiieii e 2366
51.1. The Path Of @ QUETNYuviiieiiii e e 2366
51.2. How Connections Are Establishedccooooiiiiiiiiiiii e, 2366
51.3. ThE Parser StAgE ...uuivvnieiie e et e e e e eens 2367
51.4. The PostgreSQL RUIE SYStEMcuuuieiiiiiiieeeiiieeeee e 2368
51.5. Planner/OptiMizZEercccuuiiiiieii e e e aaaes 2368
Y I = o U o TP 2369
YISV (= I OF - [0 o 2371
YA I O Y= gV 1= 1 PR 2371
52.2. PO 00N €AL& L.ttt 2373
Y2 T o Lo T 1o ¢ [P 2374
Y2 N o Lo J= 10 0] o H PP 2375
2.5, PO NPT OC ittt 2376
52.6. PO _at trdef oo 2376
B2.7.pg_attribut @ oo 2377
52.8. PO _AUL NI 0 oo 2379
52.9. pg_aut h_mMBNDErS .. 2380
52,00, PO LA ittt 2380
5211 PO _Cl @SS it 2381
52.12. PG _COl L At i ON coveiii i 2384
LSy K T o To T X oY 1 13 A - Y I o | PN 2385
LSy S o To T o1 o] 0 VA=Y G =Y o] o PN 2387
52.15. pg_dat @DaSe ..ccvuiiiiiii e 2387
52.16. pg_db rol e Setting .cocoiiiiiiiii e 2389
52.17. pg_defaul t _acl ..o 2389
LSy S T o To o =Y 11 o (o [REU N 2390
LSy K N o To o (=YY of g I o) A o o [2392
52.20. PO BNUM .ttt 2392
Sy B o T T =1V =1 o | G O o Lo [2393
52.22. PY_EXE ENST ON civuiiiiiiiii e e 2393
52.23. pg_foreign_data W apper ...oocccoiiiiiiiiiiieeiii e 2394
52.24. PG _fOr €I N _SEI VeI ittt 2394
52.25. pg foreign tabl @ .o 2395
A T o T T T o 1= G 2395
52.27. PO i NNEIT 1S it e 2397
Sy T o 1o T o VI S] YA TP 2397
A I o T T B Y [0 1V = Vo = PN 2398
52.30. pg_l argeobj Ct ... 2398
52.31. pg_largeobject_netadataccooeeiviiiiiiiiiiiii e 2399
52,32, PO _NAIMBSPACE ottt 2399
52.33. PO _OPCl @SS .uniiiiiiiiii i 2400
52.34. PO 0PI AL OF ooiiniiiiiiie e 2400
52.35. PG _OPf ami [Y oo 2401
52.36. pg_paramet €r _acClcoiiiiiiii 2402
52.37.pg_partitioned tabl eccooiiiiiiiii 2402
52.38. PO POl i CY crrriiiiiie e 2403
52,30, PO Pl OC ittt 2404
52.40. pg_PuUbl i Cati ON oo 2406

XVi

PostgreSQL 18devel Documentation

52.41. pg_publicati on_NamBSPacCeccoocevieiiiieiiii e 2407
52.42. pg_publicati on_rel . 2407
D243, PO T AN ittt 2407
52.44. pg replicati on_Ori giN i 2408
ST o To T =X T A = TN 2408
52.46. pg_secl abel ... 2409
Yy oo T =To [UT=] o [o = PRSPPI 2409
52.48. pg_ShAepend ... 2410
52.49. pg_ShAeSCri PtiON i 2411
52.50. pg_shsecl abel ... 2411
YA I o T =) A= LA = A N 2412
52.52. PG St At i STi C_ XL it 2413
5253. pg_statistic_ext_datacccooiiiiiiiiiiiiiiii 2414
52.54. PG _SUDSCIi PLI ON coviiiiii e 2415
52.55. pg_SUbSCription_rel . 2416
52.56. pg_tabl ESPACE ..cviviii e 2416
B2.57. PG _transSt OF M. 2417
St I o To T O I [0 1= N 2417
52.59. PO 1S _CONTF I G civiiiiiiiii e 2419
52.60. pg tS _CONFi g IMBP oiiiiniiiii e 2419
B52.6L. PO 1S i Cl orniiiiiiii e 2420
2.2, PO b S PaI ST ittt 2420
52.63. PG tS LEMPI Al @ corvriiii i 2421
YT o o To T VA o 1 PP 2421
52.65. PG _USEI _IMAPPI NQ tovniiiiiieiiiieiie e ee e e e e e e e e et e e e e eeanees 2425
B3 SYSIEIM VIBIWS ..ttt et e et e e e e 2426
53,1, OVEIVIBIW ..ttt ettt e et e et e e e e et n e e e et s e e e et aeeeesenaeeeees 2426
L T o To T - L o 1= 2427
53.3. pg_avail abl @ _ ext enSi ONScocoviiiiiiiiiiiic e 2429
53.4.pg_avail abl e_ext ensi 0n_Versi 0Nscccceeveviiieiiieiiiiievieeennn, 2429
53.5. pg_backend _nmendry Contextscccooveiiiiiiiiiii i, 2430
53,6, PO CONT I g iiiiiiiiii i e 2431
L3 A A o T T o U1 =Y o] = R PP PPPP 2431
53.8.pg_fil e SettinNgS cooiiiiii i 2432
e e I o To T o | a0 11 o I PP 2432
53.10. pg_hba file rul @S . 2433
53.11. pg_ident file _MapPi NOS i 2434
eI 2 o To T T 4 Lo 120 €= 1 N 2434
5313, PO | OCKS i 2435
e I I o To N .- Y VA = 1PN 2437
53.15. PG PO i Cl 8BS it 2438
53.16. pg_prepared _Stat EMBNES ...coiiiiiiiiii e 2438
53.17. pg_prepar €d_XaCL S ..ociiiiiiiiiiiiiii e 2439
53.18. pg_publication_tabl scccoooiiiiiiiiiii 2440
53.19.pg_replication_origin_statuscccoeeeiiiiiiiiiiiiinnciii e, 2440
53.20. pg replicati on_SIotS .ooiiiiiiiiii 2441
LY T2 O o To T o =T TN 2443
B53.22. PO T Ul BS it 2443
53.23. pg_SeCl @bel S .o 2444
5324, PO _SEUUEBNCES ouiiiiiiiii e 2444
53.25. PO S LI NS iiiiiieiii i e 2445
53.26. P _ShAUOWuiiiiii e 2447
53.27. pg_shmemal | 0Cat i ONScocoviiiiiiiiii e 2448
53.28. pg_shmem al l ocati ONS_NUMAccoviiiiiiiiiiccc e, 2448
53,20, PO St AL S ittt 2449
53.30. PO_St Al S BXL 1ottt 2451
5331 PO _St Al S_BXL XIS tiriiiiiiiiiiii i 2452
53.32. PG 1 Abl S i 2453

XVii

PostgreSQL 18devel Documentation

54.

55.

56.

57.
58.

59.

60.

61.

62.
63.

64.

65.

53.33. pg_timezone_abbrevs ... 2454
53.34. PG _t i MBZONE _NAIMES ..ivuiiiiieiiii e e e e e e e e e e e e e e eaaes 2454
LY ST o o T U =1 = PP 2455
G RC T o Jo TRV EST=1 N 1Y o] o L o T 2455
T A o T T4 I =1 TN 2456
53.38. PO WA T BVENE S ittt 2456
Frontend/Backend ProtoCOloovieuiiiiiiiiiiee e 2457
BA.1. OVEIVIBIW ...eeiiiieee it e ettt e ettt e e et s e e et s e e e et n e e e et s e e eeatnneaaees 2457
54.2. MESSAPE FIOW ...ouiiiiiieii e e 2459
54.3. SASL AULNENTICAIONiiieeiiieieei e 2473
54.4. Streaming Replication ProtoColcccceviieiiiieiiiieiiiieeee e e 2476
54.5. Logical Streaming Replication Protocolccooeeviiiiiiiiniiieee, 2485
54.6. MESSAgE Dala TYPES ..vuivriiiiiiiie ettt 2487
B54.7. MESSA0E FOIMMELS . vuiviiiie e 2488
54.8. Error and Notice Message FieldSooviiiiiiiiiiiii e 2505
54.9. Logical Replication Message FOrMAELScccevuveiinieiiiieeiiieeiiiieeiieeeineens 2506
54.10. Summary of Changes since Protocol 2.0cccoveviiiiiiiiiiiiiecieeeiees 2515
PostgreSQL Coding CONVENTIONSc.vuiiiiiieiiieeie e e e e e e e e e eeaeeeenes 2517
oL I o 4 0= 1] o 2517
55.2. Reporting Errors Within the Serverocovvviiiiiii e 2517
55.3. Error Message Style GUIEcc.vviiiiiiiiiic e 2521
55.4. Miscellaneous Coding CONVENLIONSccevuieiieeiiiieciie e e eanes 2525
Native Language SUPPOITuuiiii e e e e e e e e e e e e e et e e st e e et eeanaees 2527
56.1. FOr the TranSlalorveiiiiiieieiii e 2527
56.2. FOr the Programimercooouuiiiiiciie e e e 2529
Writing a Procedural Language Handlercooviviiiiii i, 2533
Writing a Foreign Data WIaDPEScvuieiiie e eceee e e e e e e e e e e e aans 2535
58.1. Foreign Data Wrapper FUNCHIONSccovuiiiiiiiiiieccie e e 2535
58.2. Foreign Data Wrapper Callback ROULINESoevviiiiiiiiciieccieccieeeen, 2535
58.3. Foreign Data Wrapper Helper FUNCLioNSccooveviiiiiiii e 2551
58.4. Foreign Data Wrapper Query Planningccoooevvieiiiiiiin e 2553
58.5. Row Locking in Foreign Data WrapperSocvvveviiieeiieeiiieeeeeeaeeeaenns 2555
Writing a Table Sampling Methodcoooiiiiii e, 2557
59.1. Sampling Method Support FUNCLIONScccvvviiiiciiiiec e, 2557
Writing a Custom SCan ProVideroveiiieiiiiieii e 2560
60.1. Creating Custom Scan Pathsccoiiiiiiiiiii e 2560
60.2. Creating Custom SCan PlanSoviiiiiiiiii e e e e 2561
60.3. EXECUING CUSLOM SCANSuvvvieiiiiieiieeei e e e e e e e e e e e et e e e eeees 2562
Genetic QUENY OPLIMIZENiiiiieie e e e e e e e e e aens 2565
61.1. Query Handling as a Complex Optimization Problemcceeeennne. 2565
61.2. GENELiC AlQOMItNMS ... 2565
61.3. Genetic Query Optimization (GEQO) in PostgreSQLccccvvvvvvvievinnnnn. 2566
61.4. Further REAINGoovvuiiii e 2568
Table Access Method Interface Definitioncooeviiieiiiiiiiieii e, 2569
Index Access Method Interface Definitioncccuvviiiiiiiiiiiiiii e 2571
63.1. Basic APl Structure for INAexXesccuuivieiiiiiieeiiieec e 2571
63.2. Index Access Method FUNCLIONSovveviiviiiiiiecc e 2574
63.3. INAEX SCANMNING +..evvneieiiieeie e e e e e e e e e e e e e e e eeeen 2581
63.4. Index Locking Considerationsc..ovevuiieiiieeiiieecii e eeie e e e 2582
63.5. Index Uniqueness ChECKSoovuuiiiii i 2583
63.6. Index Cost EStimation FUNCHIONSuuieiiiiiiieiiiiiee e 2584
Write Ahead Logging for EXTENSIONSocvvuieiinieiiiieeie e e e e e, 2588
64.1. GeNEriC WAL RECOITSieiiiiiiieiiii et e s 2588
64.2. Custom WAL ReSoUrce ManagersSccuvvuiiniiiiiiiieiieie e 2589
Built-in Index AcCessS MethOOScccuvuiiiiiiiiicii e 2591
B5.1. B-Tree INUEXESvviieiiiii et aaens 2591
B5.2. GIST INUEXES ...vviiieiiiiie ettt 2598
65.3. SP-GIST INUEXESvuiieiiii ettt e e e e e eaees 2616

XViii

PostgreSQL 18devel Documentation

B5.4. GIN INUEXESvueiiiiiiieeee et e e et eeeeaeaeaees 2628

65.5. BRIN INAEXES ... cieiiiiieeiii e e e e e e e e e 2635

B5.6. HaSh INEXESvviiiiiiiecce e 2648

66. Database PhySICal SIOragecvvvniiiii e e e e e 2650
66.1. Database FIle LayOutcccouuieiiiieiii e 2650

B6.2. TOAST ettt ettt ettt et e e et e et e e et e e et a et aae 2652

66.3. Free SPace Mapouuiiiiiie e 2655

66.4. VISIDIlIY MaD ...oieeiieiei e 2655

66.5. The INitidization FOrKcooeiiiiiiiiiii e 2656

66.6. Datahase Page LayOulcccuuiiiiiieiiieii e e 2656

66.7. Heap-Only Tuples (HOT) .oovuuiiiiiii e 2659

67. TransaCtion PrOCESSINGccvuuiiiii i e e e e e e e e e e e et e e aaaaees 2660
67.1. Transactions and [dentifierscoveviuiiiiiiiiiii e 2660

67.2. Transactions and LOCKINGcccouviiiiiiiiiiii e e e 2660

67.3. SUDLFENSACLIONSciiivieeeiie et e e e 2660

67.4. TWO-Phase TranSaClioNScceveuiiieeiiiiiieeeie e 2661

68. System Catalog Declarations and Initial Contentsc.cccevevvieiiiiieeieeeinenn, 2662
68.1. System Catalog Declaration RUIESccvviiiiiiiiiieiiiec e, 2662

68.2. System Catalog INitial Datacceueeiuiiiiiieiiie e 2663

68.3. BKI File FOMMELuuiiiiiiiieeiii e 2668

68.4. BKI COMMENGScoevviiiiiiiieee e e s 2668
68.5. Structure of the Bootstrap BKI Filec.ooiiiiiiiiiii e, 2669

68.6. BKI EXAMPIE ...uviiieiiiii e 2670

69. How the Planner USES SEatiStICSvvvuneiiiiiiieiiiii e 2671
69.1. Row EStimation EXamMPIESviiiiiiiiicii e 2671

69.2. Multivariate Statistics EXamplesc.ooevviiiiiiiiii e 2676

69.3. Planner Statistics and SECUNLYcc.veviiieiiiiieii e 2680

70. Backup Manifest FOMELcoovuiiiiiiiii e e e e e 2682
70.1. Backup Manifest Top-level ODJECtc..veiviiiiiiieci e, 2682

70.2. Backup Manifest File ObJECtocvvviiii e 2682

70.3. Backup Manifest WAL Range ObJeCtceevviiiiiiieiiieecieeceeeee e 2683

RV L TN o) = o [(=S 2684
A. POSIOreSQL Error COUESuuiiiiieiii e ei e e e e et e e e e e e e e e e et e e eanaaees 2691
B. Dat€/Time SUPPOIT ...iitieii ettt e e e e e e e e e e e e et e e e e e et e e et e eeanaees 2700
B.1. Date/Time Input INterpretationeevvvieeiiiieii e 2700

B.2. Handling of Invalid or Ambiguous TimeStampscccocvvveviiieveineeennennn. 2701

B.3. Date/Time K&y WOrdScovviiiiiiiie e e i 2702

B.4. Date/Time Configuration Fil€Scoevuiiiiiicii e, 2703

B.5. POSIX Time Zone SpeCifiCationScc.veviiiiiiiiieiiiecii e 2704

B.6. HIiStory Of UNItSociviiiiiiiiii e e e 2706

B.7. JUAN DAESuiiieeiiiie et 2707

C. SOL KEBY WOIAS ... cevueiiiieiie e e e e e e e e e e e e et e e e e eaaees 2708
D. SQL CONfOIMMANCEieeiii e e e e e e e e et e eaeeenas 2734
D.1. SUPPOIEd FEAUIEScevuiiii e e e e e e 2735

D.2. UNSUPPOrtEd FEAIUIESuiiiieeii e eee e e e e e e e e e e 2747

D.3. XML Limits and Conformance to SQL/XMLcooeviiiiiiiiiiiiieiiiieeiiees 2755

E. REIEASE NOES ...oevviieiiiii et e e e et e e et e e eeaa e aees 2759
E.L REEESE 18 ... e e e 2759

E.2. Prior REIEASES ...t 2772

F. Additional Supplied Modules and EXtENSIONSoevvviiiiiieiiiiccieece e, 2773
F.1. amcheck — tools to verify table and index consistencyccooeevvnneennnn. 2775

F.2. auth_delay — pause on authentication failureccooooiiiiiiniin s 2781

F.3. auto_explain — log execution plans of SIoOW qQUEFESccvevvviiiiiieiinnennn, 2782

F.4. basebackup_to_shell — example "shell" pg_basebackup module 2785

F.5. basic_archive — an example WAL archivemodulecccooeeiieinnn. 2786

F.6. bloom — bloom filter index access methodccooveiviiiiiiiiiinen, 2787

F.7. btree_gin — GIN operator classes with B-tree behavior 2791

F.8. btree_gist — GiST operator classes with B-tree behaviorcco.co 2792

XiX

PostgreSQL 18devel Documentation

F.9. citext — a case-insensitive character String typeccocvvvveviiiiiiiiiciieeennnn, 2794
F.10. cube — a multi-dimensional cube datatypeccoocevvveiiiieiiiiiiiiieeiinns 2797
F.11. dblink — connect to other PostgreSQL databasesccocceveveviievinnnnnn. 2802
F.12. dict_int — example full-text search dictionary for integers 2834
F.13. dict_xsyn — example synonym full-text search dictionary 2835
F.14. earthdistance — calculate great-circle distancesccoeeevviviiiveiinnennnnn, 2837
F.15. file fdw — access datafilesin the server'sfilesystemcco.cceveienn. 2839
F.16. fuzzystrmatch — determine string similarities and distance 2842
F.17. hstore — hstore key/value datatypeccocovvveiiiiiiiiiii e, 2847
F.18. intagg — integer aggregator and enUMETaorccevvvveeineeeiiieeiieeninns 2855
F.19. intarray — manipulate arrays of iNtEgErSccuvvvviiieiiieeeiii e eaenn 2857
F.20. isn — data types for international standard numbers (ISBN, EAN, UPC,
(o PP 2861
F.21. 10 — manage large ObJECEScvivniiii e 2865
F.22. Itree — hierarchical tree-like datatypeccooeeviviiiiiiii i, 2867
F.23. pageinspect — low-level inspection of database pages............ccccevveennnnins 2874
F.24. passwordcheck — verify password strengthcoooooiviiiiiiennn, 2885
F.25. pg_buffercache — inspect PostgreSQL buffer cache statec..ccou..e. 2886
F.26. pgcrypto — cryptographic functionsccooevvieeiiiiiiiii e, 2891
F.27. pg_freespacemap — examinethefree space mapcocceveviievineennnnnns 2902
F.28. pg_logicalinspect — logical decoding components inspection 2904
F.29. pg_overexplain — allow EXPLAIN to dump even more details 2906
F.30. pg_prewarm — preload relation data into buffer caches 2908
F.31. pgrowlocks — show atable's row locking informationc..ccuueeeee. 2910
F.32. pg_stat_statements — track statistics of SQL planning and execution 2912
F.33. pgstattuple — obtain tuple-level Statisticscovveviiiieiiieeiie e, 2922
F.34. pg_surgery — perform low-level surgery onrelationdata........................ 2927
F.35. pg_trgm — support for similarity of text using trigram matching 2929
F.36. pg_visibility — visibility map information and utilities 2935
F.37. pg_walinspect — low-level WAL iNSPeCtioncccccvvveviiiiiiiiiiineennnnnns 2937
F.38. postgres fdw — access data stored in external PostgreSQL servers............. 2941
F.39. seg — adatatype for line segments or floating point intervals.................... 2953
F.40. sepgsgl — SELinux-, label-based mandatory access control (MAC) security
10707 L1 = SR 2956
F.41. spi — Server Programming Interface features/examplesccceeeeennnis 2965
F.42. sslinfo — obtain client SSL informationccooovvviiiiiiiiiiee s 2967
F.43. tablefunc — functions that return tables (cr osst ab and others) 2969
F.44. tcn — atrigger function to notify listeners of changes to table content 2979
F.45. test_decoding — SQL -based test/example module for WAL logical
(01 oo o (1 0 PN 2981
F.46. tsm_system rows— the SYSTEM ROW5 sampling method for
TABLESANMPLE ...t 2982
F.47. tsm_system_time — the SYSTEM TI ME sampling method for
TABLESANMPLE ... e 2983
F.48. unaccent — atext search dictionary which removes diacritics 2984
F.49. uuid-0ssp — a UUID generatorcccuueiiiieiiieeeiiieeie e e eeineeeieeeenans 2987
F.50. xml2 — XPath querying and XSLT functionalitycccooeviiiiiinnnnnnnn. 2989
G. Additional SUpplied Programscccuuiiiiiiieii e e e 2994
G.1. Client APPlICALIONScvvecii e e eaaes 2994
G.2. Server ApPliCALIONScvvn i 3001
L T (= g = I (0= o £ 3002
H.L CHeNt INtErTACES . ..oiiiiii e 3002
H.2. AdMINIStration TOOIScuuuieiiiiiiieiiiiis e 3002
H.3. Procedural LanQUAagEScuueeeunieiiiieiiie e e e e e e e 3002
[I g (= =T PP 3002
I. The Source Code REPOSITOMYccuuiiiiieiii e e e e e e e e e e e e e et e eaae e 3003
[.1. Getting the SOUrCe VIia Gtcovuiiiiiiiiiie e e 3003
I B o o109 01 - 1o PP 3004

XX

PostgreSQL 18devel Documentation

J L DOCBOOK ...ttt 3004

J2. TOOI SEES vttt 3004

J.3. Building the Documentation with Makecccoeveiiiiiiiii i, 3006

J.4. Building the Documentation With MESONccooeviiiiiiiiiiini e, 3008

J.5. Documentation AULNOINGcovuiieiii e 3008

JB. SEYIE GUITE ...evvieiii e e 3008

K. POStGreSQL LIMItS ...iuvniii i iciiie e e e e e e e e e et e e e eees 3011

I o {0017/ 1 PPN 3012
TS oY PP 3019

[N IR @0 oS0 o] o AN 3034

N.L When Color iSUSBHccuuniiiiiiiieiies e 3034

N.2. Configuring the COlOrSccuuiieiiii e e 3034

O. Obsolete or ReNAMEM FEAIUIEScuuuuiiiiiiiiiet et 3035
O.1l.recovery. conf filemergedinto post gresql.conf 3035

0.2. Default Roles Renamed to Predefined ROIEScocvvvieiiiiiniiiiiiieecciin, 3035

0.3. pg_xI ogdunp renamed to pg_wal dunpccooeeiieiiiiieiiecie e, 3035
0.4.pg_reset x|l og renamedto pg_resetwalcccocoiviiiiiiiiiiiiinnins 3035

0.5. pg_recei vexl og renamedtopg_recei vewalcccoceeviviiiiiinnnnnn. 3035

(23] o] oo r="o] /NP 3037
g0 1= PP 3039

XXi

List of Figures

61.1. Structure of a Genetic AlGONThMoouiiii e

65.1. GIN Internals

66.1. Page Layout ..

XXii

List of Tables

4.1. BaCkslash ESCAPE SEOUENCESciieriieeieiieeeeeti e ettt e ettt e et et e ettt e e e b e e enea s 36
4.2. Operator Precedence (highest tO TOWESE)couuuuiiiiiiiiiiii e 41
5.1. ACL Privilege ADDreViationscoouuiiiiiiiieiii et 80
5.2. SUMMary of ACCESS PriVIIEOESuiiiiiiiiiiii e 81
I DT r= R Y o= T PSPPI 148
8.2, INUMENIC TYPIES ..ttt ettt ettt et e e et e et e et et e e e e aba s 149
8.3, MONELAIY TIPS ..ottt ettt ettt et e e e 155
8.4, CAIACLES TYPES ..ottt ettt ettt ettt e e et et e e e 156
8.5. SpeCial CharaCler TYPESuuu ittt ettt ettt e e et e r e e e e ennans 158
8.6. BINAIY Daa TYPESvueeiiiti ettt ettt ettt e et et e e e e eaaas 158
8.7. byt ea Literal ESCAPEd OCLELSuuiiiiiiiieeiiii ettt e e e e 159
8.8. byt ea Output ESCAPEd OCLELSciieeiieiiiii ettt enees 159
8.9. DAE/TIME TYPES ..ttt e ettt et e e et ettt e e e et e e e eaa s 160
8.10. DB INPUL ..ottt ettt et e e e 161
8. L1, THME INPUL .ttt ettt e ettt e et e e et e e et e e e e et e e e e eaa s 162
8.12. TiME ZONE INPUL ...ttt ettt ettt ettt ettt ettt et e et e e e e e e era s 163
8.13. Special Date/TIME INPUEScoeviieieiiieee et e s 164
8.14. Date/TIime OULPUL SEYIESot 165
8.15. Date Order CONVENTIONSu.eieitteeiiii et eeti ettt et et et e e e et et eet e e enna e eennas 165
8.16. 1SO 8601 Interval Unit ADDreviationSc..uuiiiiiiiiiiiii e 168
8.L7. INEIVEl INPUL ...ttt e e et 169
8.18. Interval Output Style EXaMPIEScouuiiiiiiieeee e 169
8.19. BOOIEAN DELA TYPE ... eeeetie ettt ettt ettt ettt e et 170
8.20. GEOMELNIC TYPES ..ttt ettt ettt ettt ettt ettt e ettt e ettt e e e e et e e e eeba e eees 173
8.21. NEtWOrK AQArESS TYPES ... eeeeiiieeeetie ettt ettt e e et e e e e e e 175
8.22. ci dr Type INPut EXAMPIEScciiiiiiiii e 176
8.23. JSON Primitive Types and Corresponding PoStgreSQL TYPEScevvvvneviriinieieiiineeenns 185
8.24.] sonpat h Variablescoouuiiiii e 193
8.25.] SONPAL N ACCESSOIS ...ttt ettt et e e e e 194
8.26. ODJECt 1deNtifier TYPES ...t 217
8.27. PSRULO-TYPES ...ttt ettt et 220
9.1. COMPATSON OPEIAIOIS ...e.vueeeiti ettt e et ettt e et et et e et r e e e et e e e e et e e e eaea s 223
9.2. COMPATISON PreEdiCALESvuueiiiii ettt e e eenees 223
9.3. COomMPAriSON FUNCLIONS ...ttt 227
9.4. MathematiCal OPEIALOrSceeueieieeii ettt ettt e e e e e b 227
9.5. MathematiCal FUNCHIONSccuuiiiiiii et e e e 229
9.6. RANAOM FUNCLIONSceeitieieiie ettt ettt et e et e e 232
9.7. TrigONOMELNIC FUNCHIONS eiieiei ettt et e e e e eneens 233
9.8. HyperboliC FUNCHIONSiiiiiii et 234
9.9. SQL String FUNCLiONS 8Nd OPEIELIOISuuiieeiiiieeeeii ettt e et e e e eni e eens 235
9.10. Other String FUNCEIONS 8N OPEIAIOISeiiiiiieeieii et 238
9.11. SQL Binary String FUNCtions and OPEratorscccuuueeririnieeiiiieeeeeiie e e e 246
9.12. Other Binary String FUNCLIONSuuuiiiiiiiieiii et 247
9.13. Text/Binary String Conversion FUNCLIONSc.uuuiiiiiiiieiiiieeeei e 249
9.14. Bit SING OPEIEIOISveieeeeti ettt ettt ettt et e et e e et e e et eeeaa s 250
9.15. Bit SING FUNCLIONSviiiiii ettt e 251
9.16. Regular EXpression MatCh OPEraOrSceuuueierrieieiii et e et e e e e eeeees 256
9.17. Regular EXPression ATOIMSuu ittt et e e et e et e e e eat e e e enta e eeenes 262
9.18. Regular EXpression QUENTITIENSuuuiieiiiieiei e 262
9.19. Regular EXpression CONSIFAINTSciierieeiiii ettt e e e 263
9.20. Regular Expression Character-Entry ESCaPESccvvvuiiiiiiiiieiiiiie e 265
9.21. Regular Expression Class-Shorthand ESCapESvevvviiieiiiiiiieeeii e 266
9.22. Regular Expression Constraint ESCAPESuuiiiiiiiieiiiii e 266
9.23. Regular Expression Back REFEIENCESccuuuiiiiiiiciiii e 266
9.24. ARE Embedded-Option LEErSiiiiiieeie e 267

XXiii

PostgreSQL 18devel Documentation

9.25.
9.26.
9.27.
9.28.
9.29.
9.30.
9.31.
9.32.
9.33.
9.34.
9.35.
9.36.
9.37.
9.38.
9.39.
9.40.
9.41.
9.42.
9.43.
9.44.
9.45.
9.46.
9.47.
9.48.
9.49.
9.50.
9.51.
9.52.
9.53.
9.54.
9.55.
9.56.
9.57.
9.58.
9.59.
9.60.
9.61.
9.62.
9.63.
9.64.
9.65.
9.66.
9.67.
9.68.
9.69.
9.70.
9.71.
9.72.
9.73.
9.74.
9.75.
9.76.
9.77.
9.78.
9.79.
9.80.
9.81.
9.82.

Regular Expression Functions EQUIVAIENCIEScc.oviiiii i 270
FOrmatting FUNCHIONScoviiiii e e e e e e e et e e e eans 272
Template Patterns for Date/Time FOrmattingcouveviiiiiiiiiiii e 273
Template Pattern Modifiers for Date/Time FOrmattingccocvvveveiieeiinieeiiieeieeennnn, 275
Template Patterns for Numeric FOrmattingcooeiviiiiiiii i 277
Template Pattern Modifiers for Numeric Formattingccocevveiiiiiiiiiieiiiiecie e, 278
T 0 _Char EXAMPIES ...oucii e 279
D (A TSN @] o= - (0] £ 280
DA€/ TiME FUNCHIONS ..ottt e et e e et eeeaea s 282
AT TIME ZONE and AT LOCAL VaiantSoeeeeeriieeiiiiiieeeiiiieeeeeiinseeeeiinneeeeninns 293
ENumM SUPPOIt FUNCLIONS ... e e e e e e e e e eaans 297
(€101 0 L= (o @] 1= - (0] =TSP 298
GEOMELTIC FUNCLIONSeivvieeiieie ettt e e e e et e e e et e e e e aa e e e enanns 301
Geometric Type Conversion FUNCLIONSccoouuiiiiiieii e e 302
a0 (0115 SN @ o = = (0] ¢ 305
I[P AdAress FUNCLIONSciiiiiieiiiii ettt e et e et e e et s e e e et s e e e enenneeaes 306
MAC AdAress FUNCLIONSuuuiiiiii e e et e e e e ae e 307
B = o A [O 0= = 0] ¢ T 308
TEXt SEACH FUNCHIONS .. .viiiiiii ettt e e et e e et e e e et 309
Text Search Debugging FUNCHIONScovviiiiii e e e e e 313
UUID Generation FUNCHIONSoevvviieeiii e e e e e e e et e e et e e e et e e e eaea s 314
UUID EXIraction FUNCLIONS ... ccccviiiiiiiiiee it e et e et e e et e e et e e eetin s e e eeaineaees 315
j SON aNd | SOND OPEIAIOrScvvuieiii e e e e e e e e e e e e e e e e ea e e eanees 331
Additional | SOND OPEIELOrSccuviiiiiieiii e e 332
JSON Creation FUNCLIONSoiviieiee it e et e e et e e e et e e e enta e eeenes 333
SQL/JISON TeStiNG FUNCHIONSuiiiiiciie e e e e e e e et et e et eeaneeaaeees 336
JSON Processing FUNCLIONSc.uiiiiiii e e e e e e e eaa e 336
j sonpat h Operators and MethodSooovuiiiiiiiiii e 349
j sonpat h Filter EXpression EIEMENtSoovviiiiii i e 352
SQL/JISON QUENY FUNCLIONScvviciiiieiii e e e e e et e e e e e e e e e e e e e ea e e eanaees 355
SEQUENCE FUNCLIONS .. .eiei e e e e e e e e e e e e e e e e et e e et e e ean e eaen 363
F N = YO o= - (0] £ T PRSPPI 367
F N 4 = YA U 1 o N 368
RANGE OB OIS ..ttt ettt e e e 372
MUIITANGE OPEIAEONS . .evueiiii et e et e et e et e e e e e e e e e et e e et e e e e e aa e e et e e eaneeeens 373
RANGE FUNCHIONSuiiii e e e e e e e e e et e ean e eees 375
MUIITANGE FUNCHIONSuiiiiiicii e e e e e e e e e et e e e e eens 376
General-Purpose Aggregate FUNCHIONScouuuiiiiii e e e e 377
Aggregate FUNCiONS fOr SEAiStICSvvvuiiiieii e e e 381
Ordered-Set Aggregate FUNCHIONSoiuuieiiii e e e e e e 383
Hypothetical-Set Aggregate FUNCLIONScooviiiiiiiiiii e 384
GroUPING OPEIAtIONSvvuueiieeeiie e e e e e e et e e e e e e e s e e et s e et e ean e eateeeanaaranaes 384
General-Purpose WIindow FUNCLIONSoovviiiiiicii e 385
MeErge SUPPOIT FUNCHIONSccuuiiiii i e et e e e e e e e e e e a e e eanees 387
Series Generating FUNCHIONSccuuiiiiiiciie e e e e e e e eens 393
Subscript Generating FUNCLIONScouuiiiiiiii e e e e e e e eaes 394
Session INFOrmMation FUNCLIONSuuiiiiiiiice e 396
Access Privilege Inquiry FUNCLIONSuiiiiiiiii e 400
= (o] I =T 01O 1= - (0 =T 401
AC| I T @MFUNCLIONS ...t e e e e s 402
Schema Visibility Inquiry FUNCLIONSccouiiiiiiiiie e e 403
System Catalog INnformation FUNCLIONSccuuiiiiiiiii e e e e 404
INAEX COlUMN PrOPEriES .. ovviiiii e e e e e et e e e aes 408
F g0 Lo = (0] 1= g 1] == 408
Index Access Method Properti€Scouueiiiciiii e 409
€10 o = LSS 409
Object Information and Addressing FUNCLIONScccuveiiiieiiii e 409
Comment INformation FUNCHIONSooiiiiiiiiii e 411

XXiV

PostgreSQL 18devel Documentation

9.83. Data Validity Checking FUNCLIONSccoviiiiiiciiie e e 411
9.84. Transaction ID and Snapshot Information FUNCLiONSc.oeevviiiiiiiieiicce e, 412
9.85. SNaPSNOt COMPONENESvuieieieeii e eei et e e e e e e e e e et e e e e et e e et e e e e esan e eanneeeannas 413
9.86. Deprecated Transaction ID and Snapshot Information FUNCLIONSccccvvveviiievinnnnne. 414
9.87. Committed Transaction Information FUNCLIONSccccviiiiiiiiiieeiine e 414
9.88. CONtrol Data FUNCHIONSueiieitiee it e et e e e et e e et eeeeaa e eeeaenns 415
9.89. pg_control _checkpoi nt Output COlUMNScccovuiiiiiieiiii e, 415
9.90. pg_control _syst emOutput COlUMNSccouuiiiiiiiiiii e 415
9.91. pg_control _init Output COIUMNSccvuuieiiii e e e e e e 416
9.92. pg_control _recovery Output CoOlUMNSccuuiiiiiieiiiieeiii e e e e 416
9.93. Version Information FUNCLIONScoouuiiiiiii e e e 416
9.94. WAL Summarization Information FUNCLIONSccuuiiiiiiiinieiiiie e 417
9.95. Configuration Settings FUNCLIONScoiiiiiiiii e e e e 417
9.96. Server SIgnaling FUNCLIONScouuiiiiiee e e e e eeaaes 418
9.97. Backup Control FUNCLIONSuiiiiieii e e e e e e e e e e e eaens 421
9.98. Recovery Information FUNCLIONScovuuiiii i e e e e e e e e 423
9.99. Recovery Control FUNCHIONScciuuiiiii e e e e e e e e e 424
9.100. Snapshot Synchronization FUNCLIONSoccuuiiiieiiii e e e e 425
9.101. Replication Management FUNCLIONSuiiiiiieiie e e e e e e e e e e eaa e 426
9.102. Database ObjeCt SiZ€ FUNCLIONSuiviiiiiii e e e e e 429
9.103. Database Object LoCation FUNCLIONSccuvuiiiiiieiiiiece e e e e e e e e e e e 431
9.104. Collation Management FUNCHIONScouueiiiiiiii e ee e e e e e aens 431
9.105. Database Object Statistics Manipulation FUNCLIONSccccvviviiiieiiiici e, 432
9.106. Partitioning Information FUNCLIONScouuiiiiiiiii e e e e 433
9.107. Index MaintenanCe FUNCLIONScoeuutieiiiiie e e e e e e eees 434
9.108. Generic File ACCESS FUNCLIONScccuuiiiiiiiie et a s 435
9.109. AdVISOry LOCK FUNCLIONSccuuiiiiiiiiec e e e e e e e e 437
9.110. BUilt-1Nn Trigger FUNCLIONSuiiiiieiiie e e e e e e e e e aaees 438
9.111. Table Rewrite Information FUNCLIONSooiiiiiiieiiii e 442
12.1. Default Parser's TOKEN TYPES ..vuuiuteiiiiieiii e e e e e e e e e e e e e e e e et e e e e eanns 492
13.1. Transaction ISOlation LEVEISc.uuuiiiiiiiiee et e e e 516
13.2. Conflicting LOCK MOESuuiiiiiiiii e e e e e e e e 523
13.3. Conflicting ROW-LEVE LOCKSccvuiiiiii i e e e 525
18.1. System V IPC PalramELerSuvuiieiieii et e e 613
18.2. SSL SerVEr FilE USAE «..uuiiiiiiii ittt ettt e et e e 628
19.1. synchronous COMMIt MOGEScuuiiiiieiii e e e e e e eees 656
19.2. Message SEVErity LEVEIS ...ouiii i 685
RS CT oo J@a g o 1= ox i o) d T @ o) (0] - 686
19.4. Keys and Values of JSON LOg ENFHESccuuiiiiiiiiiii e e 693
19.5. ShOrt OptioN KEY ...oveniii i e e e e e e e e e e e e 724
23.1. ICU CoOllatioN LEVEISvuieiiii ettt e e e e et e e e e e s 775
23.2. ICU Collation SEINGS ...cvvvneeiiieiiiie e e e e e e e e e e e e e et e e st e e e e aaeeeenns 776
23.3. PoStgreSQL Charalter SELSiuuuiiiiieiiii e et e e e e e e e e e e e e e e eees 780
23.4. Built-in Client/Server Character Set CONVEISIONSuveviiiiiieiiiiieeeeiiiee e et eeaiies 784
23.5. All Built-in Character Set CONVEISIONSieiiiiiieeiiiiieeeeeine e et e e et e e et eeaenenans 785
26.1. High Availability, Load Balancing, and Replication Feature Matrixccooeevvnnennnnn. 819
27.1. DYNAMIC SEAISHCS VIBWS ..oovniiiceiie e e e e et e e e e e e e e e eeeen 841
27.2. Collected SEAISHCS VIBWSeveveieeeiie ettt e et e et eeeaa s 842
27.3.pg_Stat _aCti Vity VIBW oo e 844
- T | A Y/ o= PSP 846
27.5. Wait Events of TYPE ACT 1 Vi LY couiiiiiii e 847
27.6. Wait Events of Type Buf f €r pi N ..o 847
27.7. Wait Events of TYPE Tl i €N ..o 847
27.8. Wait Events of TYPe EXt €NST ON ..oovvviiiii e e 848
27.9. Wait EVENntS Of TYPE I 0 ...iviniiiici e e e e 848
27.10. Wait EVENtS Of TYPE I PC civvniiii i e e e e e 851
27.11. Wait Events of TYPE LOCK ...iiiiiiiii i 853
27.12. Wait Events of Type LW OCKvviiiiiiii e 854

XXV

PostgreSQL 18devel Documentation

27.13. Wait Events of TYPE Ti MBOUL ...uiiiiiiiii e e e e e e e 857
27.14. pg_stat _replicati ON VIEBW ..o 858
27.15.pg_stat _replicati on_ sl otS VIew ...coocoieiiiiiiii e 860
27.16. pg_stat_Wal _reCei VEI VIBW ..iciiiiiiic e 861
27.17. pg_stat _recovery prefetch VIiewccooeiiiiiiiiiiiice e, 862
27.18. pg_stat _subsCripti on VIEW ..coccuiiiiiiiii e 863
27.19. pg_stat_subscription_stats VIEWcccoeeviiiiiiiiiiin e, 863
27.20. PO _ST AL SSI VIBW couiiiii i 864
27.21. pg_Stat _gSSAPI VIBW couiiiiiiii it 865
27.22. pg_stat _arChi VEr VIiBWcoiiiiiiii e e e 866
A T o T =X A= L o T A 1= 866
27.24. pg_sStat _BgWrit €5 VIiEW ..o e 869
27.25. pg_stat _checkpoi N er VIBW ...ccouiiiiiiii e 869
27.26. Pg_Stat WAl VIBW .ouiiiiii e 870
27.27. pg_stat _dat abase VIieWc.ooiiiiiiiii i 870
27.28. pg_stat _database_confliCcts VIEWccoeeiiiiiiiiiiii e, 872
27.29. pg_stat_all _tabl @S VIeW ..o 873
27.30. pg_stat _all i NdeXeS VIBW ..o e 874
273L. pg_statio_all _tabl €S VIEW ..o 876
27.32.pg_statio_all 1 NAdeXeS VIBW ..cccuiiiiiiiiiie e 876
27.33.pg_statio_all _SequUENCES VIBWccuiiiiiiiiiiie e 877
27.34. pg_stat_user _fUuNCti ONS VIEWocooviiiiiiiiiiiic e 877
27.35. PG St At _SI T U VIBW ooiiiii e 878
27.36. Additional StatistiCS FUNCHIONSuuiiiiiiieiceii e 878
27.37. Per-Backend Statistics FUNCHONSuuiiiiiiiiccci e 881
27.38. pg_stat_progress_anal YZe VIEWcoccciiiiiiiiiii i 882
27.39. ANALY ZE PhESES ...cevviiieiiiii ettt e et e e e e e e e et e e e et e e e e aaa s 883
27.40. pg_stat_progress _Cluster VIBWccooooii i 883
27.41. CLUSTER and VACUUM FULL PhaSEScccuuiiiiiiiiieiiiin e 884
27.42. pg_stat_progress_COPY VIBW ..o e e 885
2743.pg_stat_progress_create_i NdeX VIBWcoieviiiiiiiiiiiiiiccineccee e, 885
27.44. CREATE INDEX PhESES ...cevuiiiiiiiiieiiiie ettt e et e e et e e et a e e et 886
27.45. pg_stat_progress _VAaCUUMVIBWccuiiiiieiiiieiiieeeieeee e e e e e e eaaes 887
27.46. VACUUM PhESES ..ocvvuiiiiiii ettt e e e e et e e e et e e e et e e e et e e e e aaa s 888
27.47. pg_stat_progress_basebackup VIiewccoooiviiiiiii i, 889
27.48. Base BaCkup Phasescoovuiiii e 890
27.49. BUIlt-iN DTTaCe PrODES . ..ceeviieeee e 891
27.50. Defined Types Used in Probe Parameterseevviiiiiiiiiieeceeeeeee e 897
29.1. UPDATE Transformation SUMIMAIYccuuieiuueeiiieeiiiieeiieeeaeeeeineeeae e st e st eeaaneeeens 921
29.2. Replication RESUIT SUMMEIYcivniiiiiie e e e e e et e e e e eens 931
32.1. SSL MOAE DESCIIPLIONS ...u.civieiii e eiie et e et e e e e e e e e e e e e e et e e e e eenaas 1053
32.2. Libpg/Client SSL FIlE@ USAQE ... ccvuiiiiieii e et ee e e e e e e e e e eaaas 1054
33.1. SQL-Oriented Large Object FUNCLIONSccouuiiiiiiciii e 1076
34.1. Mapping Between PostgreSQL Data Typesand C Variable TYPeScceevvvvevieeinnnnns 1092
34.2. Valid Input Formats for PGTYPESdat € from ascc.ccceveviiiiiiiiieiii e, 1110
34.3. Valid Input Formats for PGTYPESdat € fmt_asCccoovvviiiiiiiiiin i 1112
34.4. Vaid Input Formats for rdef mtdat €cocooviiiiiiiii 1113
34.5. Valid Input Formats for PGTYPESt i mest anp_from ascccooeeeveveiiiiieinnneennn. 1114
35.1.informati on_schema_catal og _ name Columns...........cccooeviiiiiiiiiinecieeen, 1192
35.2. admi ni strabl e rol e_authorizations Columns.............ccoeeeviiiiiiinecinnennnn, 1192
35.3. applicabl e rol s ColumNSoiiiiiiiiiii e 1192
35.4. At 1 ri DUt €S COlUMNS ...utiiiiii et e e e 1193
35.5. charact er _Set'sS COIUMNSuuiiiiiiiii e e e e e aaa e 1195
35.6. check_constraint_routine_usage Columns............cccovviiiiniiiiieiiineeineennnn, 1196
35.7.check_constrai Nt'S ColUMNScooouiiiiiiiiiiii e e e 1197
35.8. COl 1 @t i ONS COIUMNSuuiiiiiii e e e e e e et e e eaa e ees 1197
35.9.col lation_character_set _applicability Columns...........cc.ocovvernnnnn. 1197
35.10. col um_col umm_usage COlUMNSeiiiiii e e e e e e 1198

XXVi

PostgreSQL 18devel Documentation

35.11. col um_domai N_uSage COIUMNSueiiiiei e ee e e e e e e e 1198
35.12. col UMM_0pPt i ONS COlUMNS .. .ccvuiiiieii e e e e e e eaas 1199
35.13. col um_pri vil eges ColumMNSc.ooiviiiiiiiii i 1199
35.14. col umMm_udt _uSage COlUMNSc.uiiii e e e e 1200
35.15. COl UMMS COIUMNSeiiiiiieeiiii ettt e et e et s e e e et e e e eeten e e e eereaeeeees 1200
35.16. constrai nt _col unm_usage ColuMNScoevviiiiiiiieiiiieeie e e 1203
35.17.constraint _tabl e _usage ColumNScc.oeeviiiiiiiiiiiiiiecie e 1204
35.18. data_type privileges ColuUmMNSccooveiiiiiiiiiiiiii e e e 1205
35.19. domai n_constrai Nts COlUMNScooiiiiiiiii e 1205
35.20. domai n_udt _USage COlUMNScuuuiiii i e e e e e e 1206
35.21. dOMBI NS COIUMNSciiiiiiee ittt e et e et s e e e et e e e eete e e e eareaeeeees 1206
35.22. el ement _t yPES COIUMNSoviiiiiieei e e e e e e eens 1208
35.23. enabl €d_r ol €S COlUMNSc.uiiiiiiiii e e e e 1210
35.24.forei gn_data wrapper_opti ons ColumNScccveviiiiiiiineiiiieciiieeineeeenn, 1210
35.25. foreign_data wappers ColUmMNScooeiuiieiiiiiiiii e 1211
35.26. forei gn_server_opti ons ColUMNScocovuieiiiiiiiiieeiii e e 1211
35.27.forei gn_servers COlUMNSoiiiiii i e 1212
35.28.foreign_tabl e options ColuUMNSccocoviiiiiiiiii e 1212
35.290. foreign_tabl €5 ColUMNScocuuiiiiiiiii e e e 1213
35.30. key_col umm_usage COlUMNSeiiiiiiiii e e e e e e e e e een 1213
35.3L. par anBt €S COIUMNSciuiiiiii i e e e e e e e e e e e eaen 1214
35.32. referential _constraints ColUmMNS.........ccoooviiiiiiiiiiiiieiii e 1215
35.33.role_colum_grants ColUMNScoeiiiiiiii i 1216
35.34.role_routine _grants ColUMNScccuuuiiiiiiieiiiieii e ee e e e e e 1217
35.35.ro0l e table grants ColUMNSc.oooviiiiiiiiiiiii e 1217
35.36.r0l e_udt _grants COlUMNSviiiiiiiii e e 1218
35.37.rol e_usage_grants COolUMNSc.viviiiiiiiiiiiii e e e 1219
35.38. routine_col umm_usage ColUMNSc.uvviiiiiiiiiieiie e e e 1219
35.39. routine_privileges ColUMNSooeiuiiiiiii i 1220
35.40.routine_routine_usage ColUMNSccoeeuiieiiiiiiiii e 1221
35.41. routine_sequence_usage COlUMNScccouuieiiiiiiiiieeeii e e e e 1221
3542. routine_tabl e _usage ColUMNSc.ccuuiiiiiiiiiiiicii e 1222
35.43. T OUL T NES COIUMNS ...coeviiiiiii et e e et e e e et e e e eab s e e e eataeaeees 1222
35.44. schemBt @ COIUMNSuuiiiiiiie e e e e e e et e eeeat e aeee 1226
35.45. SEQUENCES COIUMNSuuiiiiiiii e e e e e e eean e eees 1227
35.46. sql _feat ures COlUMNScc.iiiiiiiii e e 1228
3547.sql _inplenmentation_info ColumMns.........ccoooviiiiiiiiiiic e 1228
35.48. 51 _Part s COIUMNScivuiiiiii e e e e e e e e eaes 1229
35.49. Sl _Si Zi NG COIUMNSiiiiiiii e e e e e e e e e aes 1229
35.50.tabl e _constrai Nts COolUMNScccuiiiiiiiiiiiic e e 1229
3551 tabl e privileges ColUmMNScccooouiiiiiiiiiii e e 1230
35.52. t @bl €S COIUMNSiiiiii e e e e e eeae 1231
35.53. t ransSf Or MB COIUMNS ... e e e e e e eees 1232
35.54. triggered _update_col ums ColumMNScooevviiiiiiiiiiii e, 1232
35.55. t 1 GOEI'S COIUMNS .. .cetuiii i e e et e e e e e e e e e e et e et e e aan e eeas 1233
35.56. udt _privil eges COolUMNScocuiiiiiiiiii e e e e e eeas 1234
35.57. usage_pri Vil eges ColUMNScoeiiiiiiiiiii e e e e e 1235
35.58. user _defined_types COolUMNScoeiiiiiiiiiiiii e 1235
35.59. user _mappi NG_0opt i ONS COlUMNScoouiiiiiieiii e e e 1237
35.60. user _mBpPi NGS COIUMNSuiiiiieei e e e e e e eeeas 1237
35.61. vi ew_col um_usage ColUMNSccuiiiiiiiiiiicii e e e 1238
35.62. vi ew routine_usage COlUMNSooeiiiiiiiiiiiii e e 1238
35.63. view tabl e_usage ColumNSc.cooiiiiiiiiiii e 1239
35.64. Vi @WS COIUMNS ..uuiiiiiiii ettt e et e e e et s e e e et aeeeaaeaeeeneen 1239
36.1. POIYMOIPRIC TYPES . ovvniiiii et e e e e e e e e e e e st e et e e aaeeaens 1248
36.2. Equivalent C Types for Built-in SQL TYPEScvvvniiiiiiiiiieee e e e 1274
SR T S O I (=TS = (=0 =P 1315
36.4. HaSh SUalEOIES .. .eeeiieeiiii et e e e e e e s e e et et e s e e e e e e aas e e e e eeeeeannes 1316

XXVii

PostgreSQL 18devel Documentation

36.5. GIST Two-Dimensional “R-treg” StrategieSoeivuieiiiiieiiieeiiii e e e 1316
36.6. SP-GIST POINt SITALEJIESvu i ieeiiiiieeeiii et e et e et e e e e e 1316
I A O N N 4 - VS = =0 == N 1316
36.8. BRIN MiNMaX SIralEOIES .. cvvuiiineiiiieiiieee e e e e e e e e e e e e e e et e et e e aaneeeanas 1317
36.9. B-Tree SUPPOrt FUNCLIONScoviiiii e e e e e e e e e e et e e aaeees 1317
36.10. Hash Support FUNCLIONSiiiiieiie e e e e e e e e e 1318
36.11. GiST SUPPOIt FUNCLIONSieviiciii e e e e e e e e e e e e e et eean e eees 1318
36.12. SP-GiST SUPPOIt FUNCHIONS ... cevuiiiiieiie e e e e e e e e e e e aaas 1319
36.13. GIN SUPPOIt FUNCLIONSiieciiii e e e e e e et e et e e e e eens 1319
36.14. BRIN SUPPOIt FUNCLIONSuiiiiieiii e e ee e e e e e e e e e e e e e et eeaneeaens 1319
41.1. Available DIiagnostiCS ItEMSiiuiiiiie e e e e e 1406
41.2. Error DIiagnoStiCS ITBIMS . .cvuiiii e e e e e e e et e e e e aes 1420
300. Policies Applied by Command TYPEuueviuieiiii e e e 1829
301. pghench Automatic Variablesooiiiiiiii e e 2174
302. PYDENCH OPEIGIOISeevieeiie et et e e e e e e e e e e e e e et e et e e et eeaaeeeens 2177
303. PYDENCH FUNCLIONScieicii e e e e e e e e e eaeas 2179
52.1. SYSEEM CalAlOOS ... vvvneeiteiii e ee e et e e e e e e e e e e e e e et e e et e e et e e e e e e anaaes 2371
52.2. pg_aggregat @ COlUMNScouuiiiiiieiiii e e e e e e e e e e e e et eeaaeens 2373
LSy T o o T -1 41] 1070 T 2374
YA o o[-V 0] o I Oo [49 1 2375
52.5. Pg_anPr OC COlUMNScuuuiiiiieiiii e e e e e e e e e e e e e e e e st e e et e ean e eaes 2376
52.6. pg_attrdef COolUMNScc.iiiiiiiii e e e 2376
52.7.pg_attribut @ ColUMNScccouiiiiiiiiii e e 2377
52.8. pg_aut hi d COlUMNScciiiiiiii e e e e e e e e aen 2379
52.9. pg_aut h_menbers ColUMNScciiiiiiiiiii e e e e 2380
52.10. PG_CASt COIUMNSuiiiiciii e e e e et e e et e e e e e e eaens 2381
52.11. PG _Cl @SS COlUMNS .. .ceuuiiiiiiii e e e e e e e et e et e e eeas 2381
52.12. pg_col 1 ati on COlUMNScouuiiiiiiii e 2384
52.13. pg_constrai Nt COUMNSuiiiiiiii e e e e e e e 2385
52.14. pg_CONVETr Si ON COIUMNSoutiiiiiieei e e e e e e e e e e e e e e e aens 2387
52.15. pg_dat abase COlUMNSco.uiiiiiiiiii e e e e 2387
52.16. pg_db _role_setting ColUmMNSccoovuiiiiiiiiiiii e 2389
52.17. pg_defaul t _acl ColUMNSccoiiiiiiiiiii e 2389
52.18. pg_depend COlUMNSccuiiiiiiieiiie e e e e e e e e eees 2390
52.19. pg_descCription COlUMNSccouuuiiiiiiii e e e e e e eaas 2392
52.20. PG_ENUMECOIUMINSuiiiieii e e e e e e e e e e e e et e e st e et e e aaeeeens 2392
52.21. pg_event _trigger ColUMNSccociiiiiiiiiieii e e e e 2393
52.22. pg_ext ensi 0N COIUMNScouuiiiiiiii e e e e aaas 2393
52.23. pg_foreign_data wapper ColUmMNScccoovuiiiiiiiiiiiiierii e e 2394
52.24. pg_forei gn_server COolUMNSc.ooiiiiiiiiiiiiiii e e e 2394
52.25. pg _foreign_tabl @ ColumMNSccocouuiiiiiiiiiii e 2395
52.26. PG i NAEX COIUMNS .. .couuiiiieiiii e e e e e e e e e e e et e et e e aan e eeas 2395
52.27. pg_ I NNEritS COlUMNSc.uiiiiiiiii e e e e e e e e e een 2397
52.28. pg i Nit _Privs COUMNScouiiiiiee e e e e e e eaens 2397
52.29. pg_l anguage COlUMNScouuuiiiiieiii e e e e e e e e e e e e e e e e aaeeeees 2398
52.30. pg_| ar geobj €Ct COlUMNScoouuiiiiiiiiiii e e 2399
52.31. pg_l argeobj ect _netadat a ColumNScocovviiiiiiiiiiiieiie e 2399
52.32. pg_NamESPACE COIUMNSciviiiiiiei e e e e e aaas 2399
52.33. PG_0PCI @SS COIUMNSiiiiiiiiii e e e e e e e e e eaes 2400
52.34. pg_oper at Or COlUMNSciuiiiiie e e e e e e e e e e e e et e e e e aneeeen 2401
52.35. pg_opfam |y COlUMNScciuiiiiiieeii e e e e e e e e e een 2401
52.36. pg_paranet er _acl ColUmNScocoiiiiiiiiiiii e 2402
52.37.pg_partitioned tabl € ColUMNSccooiiiiiiiii i 2402
52.38. Pg_POI i CY COIUMNSouiiiiiii e e e eaes 2403
52.39. PG _PrOC COIUMNSuiiiieiie e e e e e e e e e st e e e e e e e eaens 2404
52.40. pg_publicati on COolUMNScccuiiiiiiiii e e eeas 2406
52.41. pg_publication_namespace COlUMNScccouiieiiiiiiiiiiciii e 2407
52.42. pg_publication_rel ColumnSs.......cccociiiiiiiiiiiii e 2407

XXVili

PostgreSQL 18devel Documentation

YA T o To T 4= Y o L= T @] 11 1 410 TP 2407
52.44.pg _replication_originColumnscccocouiiiiiiiiiiiiiiii e 2408
52.45. PG reWr i t € COIUMNSiiii i e e e e e e e e e eeen 2408
52.46. pg_secl abel ColUMNScouuiiiiiiiiii e e e e e e 2409
52.47. pg_SEQUENCE COIUMNScuuiiiii it eeei e e e e e e e e e e e e e e e e e et e e e eaneeeen 2409
52.48. pg_shdepend ColUMNSco.uiiiiiiiiii e e e e e aen 2410
52.49. pg_shdescri pti on ColUMNSooiiiiiiiiiii e e 2411
52.50. pg_shsecl abel Columnsccooiiiiiiiii e 2412
52.51. pg_stati StiC COUMNSccouiiiiiiei e 2412
52.52. pg_statistic_ext ColUMNSccociuiiiiiiiiiii e e e 2413
5253. pg_statistic_ext_data Columnsccocoiieiiiiiiiiiiiii e 2414
52.54. pg_subscri ption COlUMNSiiiiiiiii e e 2415
52.55. pg_subscription_rel ColumNSc.cccoiiiiiiiiiiiiiiii e 2416
52.56. pg_tabl espace COlUMNSccouuiiiiiiii e e 2417
52.57. pg_transf or MCOIUMNScoouiiiiiii e 2417
52.58. PG _tri gger COIUMNScouniiiii i e e e e e e e e e eaes 2417
52.59. pg ts _confi g COlUMNScouniiiiiiii e 2419
52.60. pg_ts_confi g _mBp COolUMNSoeiiiiiiiiiiei e e 2419
52.61. PG _tS_di Ct COIUMNS ...t e e e e e e aen 2420
52.62. pg_ts_parser COIUMNScoiiiiiiiiiii e e aans 2420
52.63. pg_ts tenpl at @ ColUMNSccccuiiiiiiiiiii e e 2421
52.64. PG L YPE COIUMNSuiiiiieiii e e e e e e s e e e e e aens 2421
52.65. t ypCat €g0TY COUESuiiiiiiiiii et e e e e e e e e e ees 2424
52.66. pg_user _mappi NG COIUMNSooiiiiiiiii e 2425
IS Y= 1= 0 B AT Y PP 2426
53.2. PG_ai 05 COIUMNSuiiiiiiii e e e e e e eaas 2427
53.3. pg_avai |l abl e_ext ensi 0Ns ColUMNScccoieiiiiiiiiieeii e 2429
53.4.pg_avail abl e_extension_versi ons Columnsccooevviieiiiiiiiiiecineeennn. 2429
53.5. pg_backend_nenory_cont ext s ColUmNScccoveviiiiiiiiiiiiiieiiie e 2430
53.6. Pg_CONTi g COIUMNSccuuiiiiiiiiiie e e e e e e e e eaa e eaes 2431
53.7. PY_CUIrSOrS COIUMNSuuiiiiiiiiii e e e e e e e e e e eaen 2431
53.8.pg_file settings ColUMNScccooiiiiiiiiii e 2432
53.9. PY_gr oUP COIUMNSiiiiieii e e e e e e e e et e e et e eean e eees 2433
53.10. pg_hba file rul es ColumNS.........ccccouiiiiiiiiiiiii e 2433
53.11. pg_ident _file_mappi NgS COlUMNScocouuiiiiiiiiii e 2434
53.12. pg_i NAEXES COIUMNSiiiiiiiiii e e e e e e e e e e eaes 2434
53.13. PG | OCKS COlUMNS .. .ceuiiiiiciii e e e e e e e e e et e e e e eeas 2435
53.14. pg_MBAt Vi WS COIUMNS .. .ouuiiiii i e e e e e e e e e e e e et e e e e an e eeen 2438
53.15. Pg_POI i Ci €S COlUMNScuuiiiiiiiii e e e e e e e e e eeen 2438
53.16. pg_prepared_stat ement's ColUMNSc.couieiiiiiiiiiiiiii e 2439
53.17. pg_prepared _Xact s COlUMNSc.coiiiiiiiiiiieii e e e 2439
53.18. pg_publication_tabl es ColumMNScccoieiiiiiiiii e 2440
53.19.pg_replication_origin_status ColumnS.........cccoeeviiiiiiiieeiiiieiiiieeieeeenn, 2440
53.20. pg_replication_slots ColUMNSc.oiiiiiiiiiiiieiie e e 2441
53.21. PG _r 0l €S COlUMNS .. .cuuniiii i e e e e e e e e e e et e et e e aa e eeas 2443
53.22. PG _r Ul €S COlUMNS .. .cutniiiieei e e e e e e e e e e e et e et e e e e eeas 2443
53.23. pg_secl abel s COlUMNScoiiiiiiii e 2444
53.24. pg_SequencCes COIUMNScc.iiiiiiiiiii e e e e e aeas 2444
53.25. pg_SettiNGS COlUMNScuuiiiiiiiii e e e e e e e e e e e e eeeen 2445
53.26. pg_Shadow COlUMNScouiiiiiiiie e e e 2447
53.27. pg_shmem al | ocat i oNs COlUMNSc.oiiiiiiiiiiiciie e 2448
53.28. pg_shnmem al | ocati ons_NuUMB ColUMNSccciiiiieiiiiieiie e 2449
53.29. PG ST At'S COlUMNS .. .ceviiiii i e e e e e et e et e e e eeas 2449
53.30. pg_stats_ext COlUMNSco.uiiiiiiiiii e e 2451
53.3L. pg_stats_ext _exprs COolUMNSooeiiiiiiiii i e 2452
53.32. pg_tabl €5 COlUMNSccouniii e e 2453
53.33. pg_ti mezone_abbrevs ColUMNScc.oiiiiiiiiiiicii e 2454
53.34. pg_ti mezone_Nanmes COlUMNSc.uiiiiiiiiiiii e e e e 2454

XXiX

PostgreSQL 18devel Documentation

53.35. PG _USEI COIUMNSuiiiieiii e e e e e e e e e e e e st e e et e e e eeens 2455
53.36. pg_user _mappi NGS COlUMNSoiiii e e 2455
53.37. PY_Vi €WS COUMNS .. .ietuiiiieiii e e e e e e e e e e e e e e et e e et e et e e aan e eeas 2456
53.38. pg_ Wai t _event s COlUMNScccuiiiiiiii e e e e e e e eaas 2456
54.1. ProtOCOI VEISIONSuuieiiiiieeeiii e ettt e ettt e et s e e e e e et n e e e et r e e e aaaaeeeatanaeeeaenns 2459
65.1. BUilt-iN GIST OpErator ClaSSESuuiiiuueeiiieiiiiie e e e e e e e e e e e e e e e et e e aanaaes 2598
65.2. BUilt-in SP-GIST Operator ClaSSESuiivvtiiiieeiiieeeiiee et e eaiie e e e see e e e s eaanaes 2616
65.3. BUilt-iN GIN OpErator ClaSSESc.uuiiiiiieiiiieeiii et e e e e e e e e e e e e st eeaneens 2629
65.4. BUilt-in BRIN Operator ClaSSEScvvuuiiiiiieiiiieiiieeeie e e e e s e e e e e e et e e sanaeens 2636
65.5. Function and Support Numbers for Minmax Operator ClasseScoeevvveviiiieiinnennnnn. 2645
65.6. Function and Support Numbers for Inclusion Operator Classesccuuvevvvivieineeninnnns 2645
65.7. Procedure and Support Numbers for Bloom Operator Classesc.ccvvveevviieeinierinnns 2646
65.8. Procedure and Support Numbers for minmax-multi Operator Classescc.eeevnnnnes 2647
66.1. CONENES OF PCDATA L.ttt ettt et e e e et e e e e e e et e e e et s e eeaenns 2650
L e == L= I Yo | PP 2656
66.3. PageHeaderData LayOULiiiiiiiiiiciii e e e e e e e e e et e e e eanes 2657
66.4. HeapTupleHeaderData LayOuLceeeuniiiiieiiii e e e e e e e e e e 2658
A.L POSIOreSQL Error COOESuuiiiiieii i eeii et e e e e e e e e e e e e e e e eaes 2691
230 Vo0 11 I = 0 1= <SP SPPN 2702
B.2. Day Of the Week NAMEScoiiiiii e e e 2702
B.3. Date/Time Field MOGIfIerScouuuiiiiiiii e 2702
C.L. SOL KEBY WOKAS ...ueetieiiiieii e et e e e e e e e e e e e et e e et e et e e et e e et e eeanaes 2708
F.1. Cube External REPreSeNtationScccuuieiiieiiii e e e e e e e e e e e e e e e eaens 2797
[0 oL @] o= = o] ¢ TP 2797
F.3. CUDE FUNCLIONS ... ittt e et e e e et e e e et neeeeatnneeeees 2798
F.4. Cube-Based Earthdistance FUNCLIONSooovvviiiieiiiiieecc e 2837
F.5. Point-Based EarthdiStance OPeratorsc..uiivieeiiieiiiiieeie e e e e e e e e aa e 2838
[ST TSY o T @ o= = o) £ P 2848
F.7. NSt Or @ FUNCHONS ..oiiiiccci e e 2849
F8.intarray FUNCHONSco.uiiiiii e e e e e e e e e aes 2857
F.O. i NEAIT QY OPEIAIOrS . oeuuiiiiieii et e et et e et e e e e e e et e e e e e st e e et e raneeees 2858
L (O R Y I 7 = W Y/ o= PP 2861
R =Y o T L PR 2862
[O =TT @ o= (] £ 2868
T I O T W o PP 2870
F.14. pg_buffercache Columnsccoooiiiiiiiiiiiie e 2886
F.15. pg_buffercache numa ColUMNSccouiiiiiiiiiiicei e 2887
F.16. pg_buf fercache_sumary() Output ColUMNSc.oevviiieiiieeiiiieeineeieeeaenn, 2888
F.17. pg_buf f ercache_usage count s() Output Columnscccoeeviveiiinneinnnnnns 2888
F.18. Supported Algorithms fOr Crypt () oeeeeeeeiieii e 2892
F.19. Iteration Counts fOr CrYPL () covnieriiiiiie e e e 2893
F.20. Hash AlQOrithm SPEEASivi i e e 2893
F.21. pgr oW ocks OUPUL COIUMNSccvuiiii i e e e e aens 2910
F.22. pg _stat_statenments COlUMNScooiiiiiiiiiii e 2912
F.23. pg_stat_statenments info ColumNS.........cccooiuiiiiiiiiiiiieie e 2917
F.24. pgstatt upl @ OUtPUt COIUMNScouuiiiiieiii e e e e e e e e eaes 2922
F.25. pgst at t upl e_appr ox Output ColUMNSccuuiiiiiiiiiii e e e e 2925
F.26. POt FgMEUNCHONS .. couniii e e e e e e e e e e e eanes 2929
F.27. PO_t I OMOPEIEIOIS ...ttt e e e 2930
F.28. post gres_fdw get connecti ons Output Columnscccovevviiieiineeiinnn. 2948
F.29. seg External REPreSentationsSccuueiiuiieiii e e e e e 2954
F.30. Examples of Valid SEQ INPULco.vniiiiii e e e 2954
F.31. SEO GiST OPErAONS . .evueiineiiteeeii ettt e e e e e e e e e et e e et e e et e e st s e et e ean e eateernneeenns 2954
[SCYS= oot~ o | I 19 Tox i) 2962
F.33. tabl €f UNC FUNCHONSuiiiiiiiii e e 2969
F.34. CONNECt DY Palrameterscouuiiiiiiiii e e e e e 2976
F.35. FUNCLioNS fOr UUID GENEION ... cevvviiieeeiiieee et e et s et e e et e e e et e e eere e eees 2987
F.36. Functions Returning UUID CONStANESccuueiiiieiiiiieiiieeiieeee e e e e e e eanaee e 2988

XXX

PostgreSQL 18devel Documentation

F.37. XM 2 FUNCHONS ...ttt e e e e e e e e e
F.38. xpat h_t abl @ Parametersccouiiiiiiiiii e
K.1. PoStgreSQL Limitalionscceuueiiiieiiiieeiie e e et e e e e e e e e e e e et e st e e et eeaaeeanns

XXXIi

List of Examples

8.1. USING the CharaCter TYPES ... eiieiii ittt ettt e et e e et e e e et eeeees 157
8.2. USING the DOOI €8N TYPE ... 170
8.3. USING the Bit SIHNG TYPES ... eeeiiieieii ettt et et e e e eaeens 178
9.1. XSLT Stylesheet for Converting SQL/XML Output to HTMLoveiiiiiiiiiiiieeeceiin, 329
10.1. Square Root Operator TYpe RESOIULIONoveveiieiiiiii e 446
10.2. String Concatenation Operator Type RESOIULIONveeeiiiiiiiiiiieeiiii e 47
10.3. Absolute-Vaue and Negation Operator Type ReSOIULIONcccuvuveiiiiinieiiiiieeeeiinn, 447
10.4. Array Inclusion Operator Type RESOIULIONveiiiiiieiiiiieeiiii e 448
10.5. Custom Operator 0N @ DOmMaiN TYPEueiiiiiieiiiiii e 448
10.6. Rounding Function Argument Type ReSOIULIONcoeiviviiiiiiiiiiieeciie e 451
10.7. Variadic FUNCtioN RESOIULIONcviiieieiiiii e e 451
10.8. Substring FUNCtion Type RESOIULIONiiiiiiiiiiiiie e 452
10.9. char act er Storage TYPE CONVEISIONcceeuuneiiiiieeieiieeeeeti e eeetis e e eeti e e eeriaeeees 453
10.10. Type Resolution with Underspecified Typesin @ Unionoeeeevviveieiiiieeiiiinnenes 454
10.11. Type Resolution in @ SImMple UNionooooiiiiiiii e 454
10.12. Type Resolution in @ Transposed UNIONcoouuuuiiiiiiiieiiiii e e 455
10.13. Type Resolution in @ Nested UNiONcc.uuuieiiiiiieiiiiiieeeeei e 455
11.1. Setting up a Partial Index to Exclude Common ValUEScc.ovviiiiiiiiiiiiiiieeiiiieees 464
11.2. Setting up a Partial Index to Exclude Uninteresting Valuescocoeviviiiiiineeiinnnnnn. 465
11.3. Setting up a Partial Unique INAEXcoouuiiiiiiiieiii e 466
11.4. Do Not Use Partial Indexes as a Substitute for Partitioningccccveveeviiinneeiennnnn. 467
20.1. Example pg_hba. coNnf ENtriES ... 732
20.2. An Example pg_i dent . conf Fileoooiiiiiii 736
32.1. libpg EXample Program Lot 1060
32.2. 1ibpg EXample Program 2uoieeii e 1063
32.3. libpg Example Program 3o 1066
33.1. Large Objects with libpg Example Programcoeeeieiiieeiiiinieeiieeeeeie e 1077
34.1. Example SQLDA PrOQraMcieuiieeeiii ettt e ettt e et e e eaa s 1130
34.2. ECPG Program Accessing Large ObJECESccuvuniiiiiiieeieii et 1144
40.1. Manua Installation of PLIPENTcooviiiiiii e 1387
41.1. Quoting Vaues in DYNamiC QUENTESuuiiieiinieeieiiieeeei et e e 1404
41.2. Exceptions With UPDATE/I NSERTiiiiiiiiiiiiii e et 1419
41.3. A PL/PgSQL Trigger FUNCHIONuuuiiiiiie et 1433
41.4. A PL/pgSQL Trigger Function for AUitingcoeeuuieiiminieiiiieeee e 1434
41.5. A PL/pgSQL View Trigger Function for AUuditingcccoovieiiiiiniiiiiiccei e, 1435
41.6. A PL/pgSQL Trigger Function for Maintaining a Summary Tableccccceeveeee. 1436
41.7. Auditing with Transition Tablescooeiiiiii e 1438
41.8. A PL/pgSQL Event Trigger FUNCLIONooeiiiiieiiiiie e 1440
41.9. Porting a Simple Function from PL/SQL t0 PL/PGSQLuvniiiiiiiieiiiiiieeciieeeceie 1448
41.10. Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL 1449
41.11. Porting a Procedure With String Manipulation and OUT Parameters from PL/SQL to

[I 0TSO U UUT PP 1450
41.12. Porting a Procedure from PL/SQL to PL/PGSQLuoiiiiiiiieiiiiie e 1452
F.1. Create a Foreign Table for POSIgreSQL CSV LOGS ... civvvvneiiiiiieeeeiiieeeeiieeeeeiineees 2840
F.2. Create a Foreign Table with an Option on @ Columncoveviiiiiiiiiinecei e, 2841

XXXii

Preface

This book is the official documentation of PostgreSQL. It has been written by the PostgreSQL
developersand other volunteersin parallel to the devel opment of the PostgreSQL software. It describes
all the functionality that the current version of PostgreSQL officially supports.

To makethelarge amount of information about PostgreSQL manageabl e, thisbook has been organized
in several parts. Each part istargeted at adifferent class of users, or at usersin different stages of their
PostgreSQL experience:

e Part | isaninformal introduction for new users.

 Part 1l documentsthe SQL query language environment, including datatypes and functions, aswell
as user-level performance tuning. Every PostgreSQL user should read this.

 Part 111 describestheinstallation and administration of the server. Everyone who runs a PostgreSQL
server, beit for private use or for others, should read this part.

 Part IV describes the programming interfaces for PostgreSQL client programs.

» Part V contains information for advanced users about the extensibility capabilities of the server.
Topics include user-defined data types and functions.

» Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

» Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What Is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2, developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database
systems much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of
the SQL standard and offers many modern features:

» complex queries

« foreign keys

* triggers

 updatable views

* transactional integrity

» multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

o datatypes

* functions

* operators
 aggregate functions
* index methods
 procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free
of charge for any purpose, beit private, commercial, or academic.

2. A Brief History of PostgreSQL

L hitps://dsf .berkel ey.edu/postgres.htm

XXXl

https://dsf.berkeley.edu/postgres.html
https://dsf.berkeley.edu/postgres.html
https://dsf.berkeley.edu/postgres.html

Preface

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of Californiaat Berkeley. With decades of development
behind it, PostgreSQL is now the most advanced open-source database available anywhere.

Another take on the history presented here can be found in Dr. Joe Hellerstein's paper “Looking Back
at Postgres’ [hell18].

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense
Advanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National
Science Foundation (NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The
initial concepts for the system were presented in [ston86], and the definition of the initial data model
appeared in [rowe87]. The design of the rule system at that time was described in [ston87a]. The
rationale and architecture of the storage manager were detailed in [ston87b].

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
[ston90a], was released to afew external usersin June 1989. In response to a critique of thefirst rule
system ([ston89]), the rule system was redesigned ([ston90b]), and Version 2 was released in June
1990 with the new rule system. Version 3 appeared in 1991 and added support for multiple storage
managers, an improved query executor, and a rewritten rule system. For the most part, subsegquent
releases until Postgres95 (see bel ow) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: afinancial data analysis system, a jet engine performance monitoring package, an asteroid
tracking database, a medical information database, and severa geographic information systems.
POSTGRES has aso been used as an educationa tool at severa universities. Findly, Illustra
Information Technologies (later merged into Informix?, which is now owned by IBM3) picked up
the code and commercialized it. In late 1992, POSTGRES became the primary data manager for the
Sequoia 2000 scientific computing project described in [ston92].

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley
POSTGRES project officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Y u and Jolly Chen added an SQL language interpreter to POSTGRES. Under anew
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes
improved performance and maintainability. Postgresob release 1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following
were the major enhancements:

* The query language PostQUEL was replaced with SQL (implemented in the server). (Interface
library libpg was named after PostQUEL.) Subqueries were not supported until PostgreSQL (see
below), but they could be imitated in Postgres95 with user-defined SQL functions. Aggregate
functions were re-implemented. Support for the GROUP BY query clause was a so added.

* A new program (psqgl) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

* A new front-end library, | i bpgt cl , supported Tcl-based clients. A sample shell, pgt cl sh,
provided new Tcl commands to interface Tcl programs with the Postgres95 server.

2 https://www.ibm.com/anal ytics/informix
3 https://www.ibm.com/

XXXIV

https://www.ibm.com/analytics/informix
https://www.ibm.com/
https://www.ibm.com/analytics/informix
https://www.ibm.com/

Preface

» The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

» Theinstance-level rule system was removed. Rules were still available as rewriterules.

» A short tutoria introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

» GNU make (instead of BSD make) was used for the build. Also, Postgres9d5 could be compiled with
an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name * Postgres95” would not stand the test of time. We chose anew
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POST GRES project.

Postgresis still considered an official project name, both because of tradition and because people find
it easier to pronounce Postgres than PostgreSQL .

The emphasis during development of Postgres95 was on identifying and understanding existing
problems in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and
capabilities, although work continuesin all areas.

Details about what has happened in each PostgreSQL release since then can be found at https://
www.postgresql.org/docs/rel ease/.

3. Conventions

Thefollowing conventionsare used in the synopsis of acommand: brackets([and]) indicate optional
parts. Braces({ and}) and vertical lines(|) indicate that you must choose one dternative. Dots(. . .)
mean that the preceding element can be repeated. All other symbols, including parentheses, should
be taken literally.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands
are preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms
should not be interpreted too narrowly; this book does not have fixed presumptions about system
administration procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL :

Wiki
The PostgreSQL wiki* contains the project's FAQ® (Frequently Asked Questions) list, TODO®
list, and detailed information about many more topics.

Web Site

The PostgreSQL web site’ carries details on the | atest release and other information to make your
work or play with PostgreSQL more productive.

4 https://wiki.postgresql.org

5 https://wiki.postgresql.org/wiki/Frequently Asked Questions
5 https://wiki.postgresgl.org/wiki/Todo

7 https://www.postgresgl.org

XXXV

https://www.postgresql.org/docs/release/
https://www.postgresql.org/docs/release/
https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org
https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org

Preface

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the PostgreSQL web site for details.

Y ourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. Read
the mailing lists and answer questions. If you learn something which is not in the documentation,
write it up and contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines

When you find abug in PostgreSQL we want to hear about it. Y our bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part
of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No oneis required to follow them but doing so tends to be to everyone's advantage.

We cannot promiseto fix every bug right away. If the bug is obvious, critical, or affectsalot of users,
chances are good that someone will 1ook into it. It could also happen that we tell you to update to
a newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed
before some major rewrite we might be planning isdone. Or perhapsit issimply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can realy do
whatever it isyou are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that a program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

» A program terminates with afatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to
fix that yourself.)

» A program produces the wrong output for any given input.
» A program refuses to accept valid input (as defined in the documentation).

A program acceptsinvalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

» PostgreSQL failsto compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is aready known.
If you cannot decode the information on the TODO list, report your problem. The least we cando is
make the TODO list clearer.

XXXVi

Preface

5.2. What to Report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the
bare facts is relatively straightforward (you can probably copy and paste them from the screen) but
all too often important details are left out because someone thought it does not matter or the report
would be understood anyway.

The following items should be contained in every bug report:

» Theexact sequence of stepsfrom program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare SELECT statement without the preceding
CREATE TABLE and | NSERT statements, if the output should depend on the data in the tables.
We do not have the time to reverse-engineer your database schema, and if we are supposed to make
up our own data we would probably miss the problem.

The best format for atest case for SQL-related problems is afile that can be run through the psgl
frontend that shows the problem. (Be sure to not have anything inyour ~/ . psql r ¢ start-up file))
An easy way to createthisfileisto use pg_dump to dump out the table declarations and data needed
to set the scene, then add the problem query. You are encouraged to minimize the size of your
example, but thisis not absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up aweb server to reproduce your problem. In any case
remember to provide the exact input files; do not guess that the problem happens for “large files’
or “midsize databases’, etc. since thisinformation istoo inexact to be of use.

» Theoutput you got. Please do not say that it “didn't work” or “crashed”. If thereisan error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output
from the terminal, if possible.

Note

If you are reporting an error message, please obtain the most verbose form of the message.
Inpsql, say \ set VERBOSI TY ver bose beforehand. If you are extracting the message
from the server log, set the run-time parameter log_error_verbosity to ver bose so that all
details are logged.

Note

In case of fatal errors, the error message reported by the client might not contain al the
information available. Please also look at the log output of the database server. If you do
not keep your server'slog output, this would be a good time to start doing so.

» The output you expected is very important to state. If you just write “This command gives me that
output.” or “Thisis not what | expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especialy refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,

XXXVil

Preface

nor do we al know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit thisitem.)

» Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default. Again, please provide exact information.
If you are using a prepackaged distribution that starts the database server at boot time, you should
try to find out how that is done.

» Anything you did at al differently from the installation instructions.

» ThePostgreSQL version. Y ou canrunthecommand SELECT ver si on() ; tofindouttheversion
of the server you are connected to. Most executable programs also support a- - ver si on option;
at least postgres --version and psql --version should work. If the function or the
options do not exist then your version is more than old enough to warrant an upgrade. If you run a
prepackaged version, such as RPMs, say so, including any subversion the package might have. If
you are talking about a Git snapshot, mention that, including the commit hash.

If your versionisolder than 18devel wewill almost certainly tell you to upgrade. Thereare many bug
fixes and improvementsin each new release, so it is quite possible that a bug you have encountered
in an older release of PostgreSQL has already been fixed. We can only provide limited support
for sites using older releases of PostgreSQL ; if you require more than we can provide, consider
acquiring a commercial support contract.

 Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on. In most cases it is sufficient to report the vendor and version, but do not
assume everyone knows what exactly “Debian” contains or that everyone runs on x86_64. If you
have installation problems then information about the toolchain on your machine (compiler, make,
and so on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is afact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it isfair to ask first whether somebody isinterested in looking into it. Hereis an
article® that outlines some more ti ps on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have timeto find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is
called “PostgreSQL ", sometimes“ Postgres” for short. If you are specifically talking about the backend
process, mention that, do not just say “PostgreSQL crashes’. A crash of a single backend process
is quite different from crash of the parent “postgres’ process; please don't say “the server crashed”
when you mean asingle backend process went down, nor vice versa. Also, client programs such asthe
interactive frontend “psgl” are completely separate from the backend. Please try to be specific about
whether the problem is on the client or server side.

5.3. Where to Report Bugs

In general, send bug reports to the bug report mailing list at
<pgsql - bugs@i st s. post gresqgl . or g>. You are requested to use a descriptive subject for
your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project's web site”. Entering
a bug report this way causes it to be mailed to the <pgsql - bugs@i st s. post gresql . or g>
mailing list.

8 https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
9 https://www.postgresgl .org/account/submitbug/

XXXViii

https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/account/submitbug/
https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/account/submitbug/

Preface

If your bug report has security implications and you'd prefer that it not become immediately visible
in public archives, don't send it to pgsql - bugs. Security issues can be reported privately to
<security@ostgresql.org>.

Do not send bug reports to any of the wuser maling lists, such as
<pgsql -sqgl @i sts. postgresql.org> or
<pgsql -general @i sts. postgresqgl . org>. These mailing lists are for answering user
questions, and their subscribers normally do not wish to receive bug reports. More importantly, they
are unlikely to fix them.

Also, pleasse do not send reports to the developers mailing list
<pgsql - hackers@i sts. post gresql . or g>. Thislist is for discussing the development of
PostgreSQL , and it would be nice if we could keep the bug reports separate. We might choose to take
up adiscussion about your bug report on pgsql - hacker s, if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation
mailing list <pgsql - docs@ i st s. post gresqgl . or g>. Please be specific about what part of
the documentation you are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsql - hackers@i sts. postgresqgl .org>, so we (and you) can work on porting
PostgreSQL to your platform.

Note

Due to the unfortunate amount of spam going around, all of the above lists will be moderated
unless you are subscribed. That means there will be some delay before the email is delivered.
If you wish to subscribe to the lists, please visit https:/lists.postgresql.org/ for instructions.

XXXiX

https://lists.postgresql.org/

Part I. Tutorial

Welcome to the PostgreSQL Tutorial. The tutorial is intended to give an introduction to PostgreSQL, relational
database concepts, and the SQL language. We assume some general knowledge about how to use computers and
no particular Unix or programming experienceisrequired. Thistutorial isintended to provide hands-on experience

with important aspects of the PostgreSQL system. It makes no attempt to be a comprehensive treatment of the
topicsit covers.

After you have successfully completed this tutorial you will want to read the Part 1l section to gain a better
understanding of the SQL language, or Part IV for information about developing applications with PostgreSQL.
Those who provision and manage their own PostgreSQL installation should also read Part 111.

Table of Contents

L. GEIING SEAMEAeeieeie ettt ettt 3
0 T 1 = = = 1o o [P 3
1.2. Architectural FUNDamENtalSc.oiviiniii i 3
1.3. Creating @ Datahasecccuuuiiiiii e 3
1.4, ACCESSING 8 DAIANESE ..ottt 5
2. The SQL LBNGUBGE ...ccevn ittt e et et e et e e e eae s 7
b2 I 1 11 (0o (U (o 1 o I PP 7
A O 04 /= o = PP PT PP 7
2.3. Creating @aNew Table ...o.uuiiii e 7
2.4. Populating @ Table With ROWScoouuiiiiiii e 8
25, QUENYING A TADIE ... 9
2.6. J0INS BEIWEEN TaADIES ...uiviiiie i 11
2.7. AQOregate FUNCLIONSccuuuieiiiii ettt ettt e e et eeeaaa s 13
2.8 UPUELES ...ttt 15
2.9, DEIBHIONSviieiee et e aaaaas 15
I Y0 (V7= o= s (1 = 17
G I 111 (oo (U o 1 o [PPSR 17
I VAT = YRS USPRPRP 17
3.3 FOrEIgN KBYS ..ttt 17
I I =01 o o 1 18
3.5, WINAOW FUNCLIONScviiviiiiii e ans 20
I ST 101015 g1 7= ot PSP 23
G I o o Tox 11 Lo o T 24

Chapter 1. Getting Started
1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is
already installed at your site, either because it was included in your operating system distribution
or because the system administrator aready installed it. If that is the case, you should obtain
information from the operating system documentation or your system administrator about how to
access PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your
experimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user; no superuser (root) accessis required.

If you are installing PostgreSQL yourself, then refer to Chapter 17 for instructions on installation,
and return to this guide when the installation is complete. Be sure to follow closely the section about
setting up the appropriate environment variabl es.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is aremote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT
might also have to be set. The bottom line is this: if you try to start an application program and it
complains that it cannot connect to the database, you should consult your site administrator or, if
that is you, the documentation to make sure that your environment is properly set up. If you did not
understand the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the
following cooperating processes (programs):

A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program
iscaled post gres.

e The user's client (frontend) application that wants to perform database operations. Client
applications can be very diverse in nature: a client could be a text-oriented tool, a graphical
application, aweb server that accesses the database to display web pages, or a specialized database
maintenance tool. Some client applications are supplied with the PostgreSQL distribution; most are
developed by users.

Asistypical of client/server applications, the client and the server can be on different hosts. In that
case they communicate over a TCP/IP network connection. Y ou should keep this in mind, because
the filesthat can be accessed on a client machine might not be accessible (or might only be accessible
using adifferent file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve this it
starts (“forks’) a new process for each connection. From that point on, the client and the new server
process communicate without intervention by the original post gr es process. Thus, the supervisor
server process is always running, waiting for client connections, whereas client and associated server
processes come and go. (All of thisis of course invisible to the user. We only mention it here for
completeness.)

1.3. Creating a Database

Getting Started

Thefirst test to see whether you can access the database server isto try to create adatabase. A running
PostgreSQL server can manage many databases. Typically, aseparate database isused for each project
or for each user.

Possibly, your site administrator has already created a database for your use. In that case you can omit
this step and skip ahead to the next section.

To create anew database from the command line, in this example named ny db, you use the following
command:

$ createdb nydb

If this produces no response then this step was successful and you can skip over the remainder of
this section.

If you see a message similar to:

creat edb: command not found

then PostgreSQL was not installed properly. Either it was not installed at al or your shell's search path
was not set to includeit. Try calling the command with an absol ute path instead:

$ /usr/local/pgsql/bin/createdb mydb

The path at your site might be different. Contact your site administrator or check the installation
instructions to correct the situation.

Another response could be this:

createdb: error: connection to server on socket "/
tnp/.s. PGSQL. 5432" failed: No such file or directory

Is the server running |locally and accepting connections on
t hat socket ?

This means that the server was not started, or it is not listening where cr eat edb expects to contact
it. Again, check theinstallation instructions or consult the administrator.

Another response could be this:

createdb: error: connection to server on socket "/
tnp/.s. PGSQL. 5432" failed: FATAL: role "joe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a
PostgreSQL user account for you. (PostgreSQL user accounts are distinct from operating system user
accounts.) If you are the administrator, see Chapter 21 for help creating accounts. Y ou will need to
become the operating system user under which PostgreSQL was installed (usualy post gr es) to
create the first user account. It could also be that you were assigned a PostgreSQL user name that is
different from your operating system user name; in that case you need to use the - U switch or set the
PGUSER environment variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

createdb: error: database creation failed: ERROR perm ssion
deni ed to create database

Getting Started

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your
site administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the
purposes of thistutorial under the user account that you started the server as. !

You can aso create databases with other names. PostgreSQL allows you to create any number of
databases at a given site. Database names must have an alphabetic first character and are limited to
63 bytes in length. A convenient choice is to create a database with the same name as your current
user name. Many tools assume that database name as the default, so it can save you some typing. To
create that database, smply type:

$ createdb

If you do not want to use your database anymore you can removeit. For example, if you arethe owner
(creator) of the database ny db, you can destroy it using the following command:

$ dropdb nydb

(For this command, the database name does not default to the user account name. Y ou always need to
specify it.) Thisaction physically removesall files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More about cr eat edb and dr opdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can accessit by:

* Running the PostgreSQL interactive terminal program, called psgl, which alows you to
interactively enter, edit, and execute SQL commands.

» Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC
support to create and manipulate a database. These possibilities are not covered in this tutorial.

» Writing a custom application, using one of the several available language bindings. These
possibilities are discussed further in Part V.

You probably want to start up psql to try the examples in this tutorial. It can be activated for the
nmy db database by typing the command:

$ psqgl nydb

If you do not supply the database name then it will default to your user account name. Y ou already
discovered this scheme in the previous section using cr eat edb.

Inpsql , you will be greeted with the following message:
psql (18devel)

Type "hel p" for help.

mydb=>

Thelast line could also be:

1 As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When you connect to a
database, you can choose what PostgreSQL user name to connect as; if you don't, it will default to the same name as your current operating
system account. Asit happens, there will always be a PostgreSQL user account that has the same name as the operating system user that started
the server, and it also happens that that user always has permission to create databases. Instead of logging in as that user you can also specify
the - U option everywhere to select a PostgreSQL user name to connect as.

Getting Started

nydb=#

That would mean you are a database superuser, which is most likely the case if you instaled the
PostgreSQL instance yourself. Being a superuser means that you are not subject to access controls.
For the purposes of thistutorial that is not important.

If you encounter problems starting psql then go back to the previous section. The diagnostics of
creat edb and psql aresimilar, and if the former worked the latter should work as well.

Thelast line printed out by psql isthe prompt, and it indicatesthat psql islistening to you and that
you can type SQL queries into awork space maintained by psql . Try out these commands:

nydb=> SELECT version();
ver si on

Post greSQ. 18devel on x86_64-pc-1inux-gnu, conpiled by gcc (Debian
4.9.2-10) 4.9.2, 64-bit

(1 row

nmydb=> SELECT current _date;
dat e

2016- 01- 07
(1 row

nmydb=> SELECT 2 + 2;
?col um?

(1 row

Thepsql program hasanumber of internal commands that are not SQL commands. They begin with
the backslash character, “\ . For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

nydb=> \ h

To get out of psql , type:

nmydb=> \q

and psql will quit and return you to your command shell. (For more internal commands, type\ ? at
the psqgl prompt.) The full capabilities of psql are documented in psgl. In this tutorial we will not
use these features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is
only intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous
books have been written on SQL, including [melt93] and [date97]. Y ou should be aware that some
PostgreSQL language features are extensions to the standard.

In the examples that follow, we assume that you have created a database named mydb, as described
in the previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/.(Binary distributions of PostgreSQL might not provide thosefiles.) To use those
files, first change to that directory and run make:

$ cd .../src/tutorial
$ make

This creates the scripts and compiles the C files containing user-defined functions and types. Then,
to start the tutorial, do the following:

$ psqgl -s nydb

nydb=> \i basi cs. sql

The\ i command readsin commandsfrom the specified file. psql 's- s option putsyouin single step
mode which pauses before sending each statement to the server. The commands used in this section
areinthefilebasi cs. sql .

2.2. Concepts

PostgreSQL isarelational database management system (RDBMS). That meansit is a system for
managing data stored in relations. Relation is essentially a mathematical term for table. The notion
of storing data in tables is so commonplace today that it might seem inherently obvious, but there
are a number of other ways of organizing databases. Files and directories on Unix-like operating
systems form an example of a hierarchical database. A more modern development is the object-
oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named
columns, and each column is of a specific datatype. Whereas columns have afixed order in each row,
it isimportant to remember that SQL does not guarantee the order of the rows within the table in any
way (although they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL
server instance constitutes a database cluster.

2.3. Creating a New Table

Y ou can create a new table by specifying the table name, along with all column names and their types:

The SQL Language

CREATE TABLE weat her (

city var char (80),

temp_lo int, -- low tenperature
t enmp_hi int, -- high tenperature
prcp real, -- precipitation
dat e dat e

)

You can enter this into psqgl with the line breaks. psql will recognize that the command is not
terminated until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means
you can type the command aligned differently than above, or even all on one line. Two dashes (“- -

") introduce comments. Whatever follows them is ignored up to the end of the line. SQL is case-
insensitive about key words and identifiers, except when identifiers are double-quoted to preserve the
case (not done above).

var char (80) specifies a data type that can store arbitrary character strings up to 80 characters
inlength. i nt isthe normal integer type. r eal isatype for storing single precision floating-point
numbers. dat e should be self-explanatory. (Y es, the column of typedat e isalso named dat e. This
might be convenient or confusing — you choose.)

PostgreSQL supports the standard SQL typesi nt, smal | i nt, real , doubl e precision,
char (N),varchar(N),date,time,tinestanp, andi nt erval , aswell as other types of
genera utility and a rich set of geometric types. PostgreSQL can be customized with an arbitrary
number of user-defined data types. Consequently, type names are not key words in the syntax, except
where required to support special casesin the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
nane var char (80),
| ocation poi nt

);
Thepoi nt typeisan example of a PostgreSQL -specific data type.
Finally, it should be mentioned that if you don't need atable any longer or want to recreateit differently

you can remove it using the following command:

DROP TABLE t abl enane;

2.4. Populating a Table With Rows

The | NSERT statement is used to populate a table with rows:

| NSERT | NTO weat her VALUES (' San Francisco', 46, 50, 0.25,
'1994- 11-27");

Notethat all datatypes use rather obviousinput formats. Constantsthat are not simple numeric values
usually must be surrounded by single quotes ('), asin the example. The dat e typeisactualy quite
flexiblein what it accepts, but for thistutorial we will stick to the unambiguous format shown here.

The poi nt type requires a coordinate pair asinput, as shown here:

I NSERT INTO cities VALUES (' San Francisco', '(-194.0, 53.0)');

The SQL Language

The syntax used so far requiresyou to remember the order of the columns. An alternative syntax allows
you to list the columns explicitly:

| NSERT | NTO weat her (city, tenp_lo, tenp_hi, prcp, date)
VALUES (' San Francisco', 43, 57, 0.0, '1994-11-29");

You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown;

| NSERT | NTO weat her (date, city, tenmp_hi, tenp_lo)
VALUES (' 1994-11-29', 'Hayward', 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order
implicitly.

Please enter al the commands shown above so you have some data to work with in the following
sections.

You could aso have used COPY to load large amounts of data from flat-text files. Thisis usualy
faster because the COPY command is optimized for this application while allowing lessflexibility than
I NSERT. An example would be:

COPY weat her FROM '/ hone/ user/weat her.txt';
where the file name for the source file must be available on the machine running the backend process,

not the client, since the backend process reads the file directly. Y ou can read more about the COPY
command in COPY.

2.5. Querying a Table

Toretrieve datafrom atable, thetableis queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), atable list (the
part that lists the tables from which to retrieve the data), and an optiona qualification (the part that
specifies any restrictions). For example, to retrieve al the rows of tableweat her , type:

SELECT * FROM weat her;

Here* isashorthand for “al columns’. * So the same result would be had with:

SELECT city, tenp_lo, tenmp_hi, prcp, date FROM weat her;

The output should be:

city | tenp_lo | tenp_hi | prcp | dat e
--------------- T T e T gy
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Haywar d | 37 | 54 | | 1994-11-29
(3 rows)

Y ou can write expressions, not just simple column references, in the select list. For example, you can
do:

L \While SELECT * isuseful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column to the table
would change the results.

The SQL Language

SELECT city, (tenp_hi+tenp_lo)/2 AS tenp_avg, date FROM weat her;

This should give:

city | temp_avg | dat e
_______________ e
San Franci sco | 48 | 1994-11-27
San Franci sco | 50 | 1994-11-29
Haywar d | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The AS clauseis optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The
VWHERE clause contains a Boolean (truth value) expression, and only rows for which the Boolean
expression is true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the
qualification. For example, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weat her
WHERE city = ' San Franci sco' AND prcp > 0.0;

Result:

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T L e
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
(1 row

Y ou can request that the results of a query be returned in sorted order:

SELECT * FROM weat her
ORDER BY city;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T I O
Haywar d | 37 | 54 | | 1994-11-29
San Franci sco | 43 | 57 | 0 | 1994-11-29
San Franci sco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn't fully specified, and so you might get the San Francisco rows in
either order. But you'd always get the results shown above if you do:

SELECT * FROM weat her
ORDER BY city, tenp_lo;

Y ou can request that duplicate rows be removed from the result of a query:

SELECT DI STINCT city
FROM weat her ;

10

The SQL Language

Haywar d
San Franci sco
(2 rows)

Here again, theresult row ordering might vary. Y ou can ensure consistent resultsby using DI STI NCT
and ORDER BY together:

SELECT DI STINCT city
FROM weat her
ORDER BY city;

2.6. Joins Between Tables

Thusfar, our queries have only accessed onetable at atime. Queries can access multipletablesat once,
or access the same table in such away that multiple rows of the table are being processed at the same
time. Queriesthat access multipletables (or multipleinstances of the sametable) at onetimearecalled
join queries. They combine rows from one table with rows from a second table, with an expression
specifying which rows are to be paired. For example, to return all the weather records together with
the location of the associated city, the database needsto comparetheci t y column of each row of the
weat her tablewith the nane column of al rowsintheci ti es table, and select the pairs of rows
where these values match.2 This would be accomplished by the following query:

SELECT * FROM weather JO N cities ON city = nane;

city | temp_lo | tenp_hi | prcp | dat e nane
| location
--------------- T S LT Jpeppp
Fom e e e e o oo Fom e e e e o -
San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San
Francisco | (-194, 53)
San Franci sco | 43 | 57 | 0 | 1994-11-29 | San
Francisco | (-194, 53)
(2 rows)

Observe two things about the result set:

» Thereis no result row for the city of Hayward. This is because there is no matching entry in the
ci ti es table for Hayward, so the join ignores the unmatched rows in the weat her table. We
will see shortly how this can be fixed.

 There are two columns containing the city name. Thisis correct because the lists of columns from
theweat her andci ti es tables are concatenated. In practice thisis undesirable, though, so you
will probably want to list the output columns explicitly rather than using * :

SELECT city, tenp_lo, temp_hi, prcp, date, |ocation
FROM weat her JON cities ON city = nane;

Since the columns all had different names, the parser automatically found which table they belong
to. If there were duplicate column names in the two tables you'd need to qualify the column names
to show which one you meant, asin:

2 |n some database systems, including older versions of PostgreSQL, the implementation of DI STI NCT automatically orders the rows and
so ORDER BY is unnecessary. But this is not required by the SQL standard, and current PostgreSQL does not guarantee that DI STI NCT
causes the rows to be ordered.

3 Thisis only a conceptual model. The join is usualy performed in a more efficient manner than actually comparing each possible pair of
rows, but thisisinvisible to the user.

11

The SQL Language

SELECT weat her.city, weather.tenp_l o, weather.tenp_hi,
weat her. prcp, weather.date, cities.location
FROM weat her JO N cities ON weather.city = cities.nane;

It iswidely considered good style to qualify al column namesin ajoin query, so that the query won't
fail if aduplicate column nameis later added to one of the tables.

Join queries of the kind seen thus far can aso be written in this form:

SELECT *
FROM weat her, cities
WHERE city = nane;

This syntax pre-dates the JO N/ON syntax, which was introduced in SQL-92. The tables are simply
listed in the FROMclause, and the comparison expression is added to the WHERE clause. The results
fromthisolder implicit syntax and the newer explicit JO NONsyntax areidentical. But for areader of
the query, the explicit syntax makesits meaning easier to understand: Thejoin condition isintroduced
by its own key word whereas previously the condition was mixed into the WHERE clause together
with other conditions.

Now we will figure out how we can get the Hayward records back in. What we want the query to do
isto scan theweat her table and for each row to find the matching ci t i es row(s). If no matching
row is found we want some “empty values’ to be substituted for the ci t i es table's columns. This
kind of query is called an outer join. (The joins we have seen so far are inner joins.) The command
looks like this:

SELECT *
FROM weat her LEFT QUTER JO N cities ON weather.city =
cities. nane;

city | temp_lo | tenp_hi | prcp | dat e | nane
| location
--------------- T T L e
o e R
Haywar d | 37 | 54 | | 1994-11-29 |
|
San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San
Francisco | (-194, 53)
San Franci sco | 43 | 57 | 0 | 1994-11-29 | San
Francisco | (-194, 53)
(3 rows)

This query is called aleft outer join because the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the | eft table. When outputting aleft-table row for which thereis
no right-table match, empty (null) values are substituted for the right-table columns.

Exercises Thereare aso right outer joins and full outer joins. Try to find out what those do.

We can aso join a table against itself. Thisis called a self join. As an example, suppose we wish
to find all the weather records that are in the temperature range of other weather records. So we
need to comparethet enp_| o andt enp_hi columns of each weat her rowtothet enp_| o and
t enp_hi columns of all other weat her rows. We can do this with the following query:

12

The SQL Language

SELECT wl.city, wl.tenp_lo AS |ow, wl.tenp_hi AS high,
w2.city, w2.tenp_lo AS |low, w2.tenp_hi AS high
FROM weat her wi JO N weat her w2
ONwl.tenmp_lo < w2.tenp_lo AND wl.tenp_hi > w2.tenp_hi;

city | lTow | high | city | low | high
--------------- e
San Francisco | 43 | 57 | San Francisco | 46 | 50
Haywar d | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table aswl and w2 to be able to distinguish the left and right side
of thejoin. You can aso use these kinds of aliasesin other queriesto save some typing, .g.:

SELECT *
FROM weat her w JON cities ¢ ONw.city = c. naneg;

Y ou will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Likemost other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to
compute the count , sum avg (average), max (maximum) and ni n (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT max(tenp_| o) FROM weat her;

If we wanted to know what city (or cities) that reading occurred in, we might try:

SELECT city FROM weat her WHERE tenp_| o = max(tenp_l 0); - - VW\RONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rowswill beincluded in the aggregate calculation;
so obvioudly it hasto be evaluated before aggregate functions are computed.) However, asis often the
case the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weat her
VWHERE tenp_l o = (SELECT nax(tenp_l o) FROM weat her);

San Franci sco

(1 row

This is OK because the subquery is an independent computation that computes its own aggregate
separately from what is happening in the outer query.

13

The SQL Language

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get
the number of readings and the maximum low temperature observed in each city with:

SELECT city, count(*), max(tenp_l o)
FROM weat her
GROUP BY city;

city | count | max
_______________ e
Haywar d | 1| 37
San Franci sco | 2| 46
(2 rows)

which givesusone output row per city. Each aggregate result iscomputed over thetablerows matching
that city. We can filter these grouped rows using HAVI NG

SELECT city, count(*), max(tenp_l o)
FROM weat her
GROUP BY city
HAVI NG max(tenp_l 0) < 40;

city | count | max
_________ T B,
Hayward | 1| 37
(1 row

which gives us the same results for only the cities that have all t enp_| o values below 40. Findly,
if we only care about cities whose names begin with “S”, we might do:

SELECT city, count(*), max(tenp_l o)
FROM weat her
WHERE city LIKE ' S% --
GROUP BY city;

city | count | max
_______________ T .
San Franci sco | 2| 46
(1 row

The LI KE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL's WHERE and HAVI NG
clauses. The fundamental difference between WHERE and HAVI NG is this: WHERE selects input
rows before groups and aggregates are computed (thus, it controls which rows go into the aggregate
computation), whereas HAVI NG sel ects group rows after groups and aggregates are computed. Thus,
the WHERE clause must not contain aggregate functions; it makes no sense to try to use an aggregate
to determine which rows will be inputs to the aggregates. On the other hand, the HAVI NG clause
always contains aggregate functions. (Strictly speaking, you are allowed to write a HAVI NG clause
that doesn't use aggregates, but it's seldom useful. The same condition could be used more efficiently
at the WHERE stage.)

In the previous example, we can apply the city namerestriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVI NG, because we avoid doing the grouping
and aggregate calculations for all rows that fail the WHERE check.

14

The SQL Language

Another way to select the rows that go into an aggregate computation isto use FI LTER, whichisa
per-aggregate option:

SELECT city, count(*) FILTER (WHERE tenp_lo < 45), max(tenp_| 0)
FROM weat her
GROUP BY city;

city | count | max
_______________ .
Haywar d | 1] 37
San Francisco | 1| 46
(2 rows)

FI LTER is much like WHERE, except that it removes rows only from the input of the particular
aggregate function that it is attached to. Here, the count aggregate counts only rowswitht enp_| o
below 45; but the max aggregateis till applied to al rows, so it still finds the reading of 46.

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after November 28. Y ou can correct the data as follows:

UPDATE weat her
SET tenmp_hi = tenp_hi - 2, tenp_lo =tenp_lo - 2
WHERE date > '1994-11-28';

Look at the new state of the data:

SELECT * FROM weat her;

city | tenp_lo | tenmp_hi | prcp | dat e
--------------- T T T gy
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Haywar d | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from atable using the DEL ETE command. Suppose you are ho longer interested
in the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weat her WHERE city = 'Hayward';

All weather records belonging to Hayward are removed.

SELECT * FROM weat her;

city | tenp_lo | tenmp_hi | prcp | dat e

San Francisco | 46 | 50 | 0.25 | 1994-11-27

15

The SQL Language

San Franci sco | 41 | 55 | 0 | 1994-11-29
(2 rows)

One should be wary of statements of the form

DELETE FROM t abl enane;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The
system will not request confirmation before doing this!

16

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL . We will now discuss some more advanced features of SQL that simplify management
and prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so
it will be useful to have read that chapter. Some examples from this chapter can also be found in
advanced. sql inthetutoria directory. Thisfile also contains some sample datato load, which is
not repeated here. (Refer to Section 2.1 for how to use thefile.)

3.2. Views

Refer back to the queriesin Section 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. Y ou can create a view over the query, which gives aname to the query that you can refer
to like an ordinary table:

CREATE VI EW nyvi ew AS
SELECT nane, tenp_lo, tenp_hi, prcp, date, |ocation
FROM weat her, cities
WHERE city = nane;

SELECT * FROM nyvi ew,

Making liberal use of views is a key aspect of good SQL database design. Views allow you to
encapsul ate the details of the structure of your tables, which might change asyour application evolves,
behind consistent interfaces.

Views can be used in almost any place areal table can be used. Building views upon other views is
not uncommon.

3.3. Foreign Keys

Recall theweat her andci ti es tablesfrom Chapter 2. Consider the following problem: Y ou want
to make sure that no one can insert rows in the weat her table that do not have a matching entry
intheci ti es table. Thisis called maintaining the referential integrity of your data. In simplistic
database systems this would be implemented (if at al) by first looking at theci t i es table to check
if amatching record exists, and then inserting or rejecting the new weat her records. This approach
has a number of problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
nane varchar (80) primary key,
| ocation point

)

CREATE TABLE weat her (
city varchar (80) references cities(nane),
tenmp_lo int,

17

Advanced Features

t enmp_hi int,
prcp real,
dat e date

)

Now try inserting an invalid record:
| NSERT | NTO weat her VALUES (' Berkeley', 45, 53, 0.0, '1994-11-28");

ERROR: insert or update on table "weather" violates foreign key
constraint "weather_city_fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

Thebehavior of foreign keys can befinely tuned to your application. Wewill not go beyond thissimple
example in thistutorial, but just refer you to Chapter 5 for more information. Making correct use of
foreign keys will definitely improve the quality of your database applications, so you are strongly
encouraged to learn about them.

3.4. Transactions

Transactions are afundamental concept of all database systems. The essential point of atransactionis
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at al.

For example, consider abank database that contains balancesfor various customer accounts, aswell as
total deposit balancesfor branches. Suppose that we want to record a payment of $100.00 from Alice's
account to Bab's account. Simplifying outrageously, the SQL commands for this might ook like:

UPDATE accounts SET bal ance = bal ance - 100. 00

VWHERE nanme = 'Alice';
UPDATE branches SET bal ance = bal ance - 100. 00

WHERE nane = (SELECT branch_name FROM accounts WHERE nane
"Alice');
UPDATE accounts SET bal ance = bal ance + 100. 00

VWHERE nanme = ' Bob';
UPDATE branches SET bal ance = bal ance + 100. 00

WHERE nane = (SELECT branch_name FROM accounts WHERE nane
' Bob') ;

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank's officers will want to
be assured that either al these updates happen, or none of them happen. It would certainly not do for
asystem failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice
long remain a happy customer if she was debited without Bob being credited. We need a guarantee
that if something goes wrong partway through the operation, none of the steps executed so far will
take effect. Grouping the updates into atransaction gives usthis guarantee. A transactionissaid to be
atomic: from the point of view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won't be lost even if a crash ensues shortly
thereafter. For example, if we are recording a cash withdrawal by Bob, we do not want any chance that
the debit to his account will disappear in acrash just after he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported compl ete.

18

Advanced Features

Another important property of transactional databases is closely related to the notion of atomic
updates: when multiple transactions are running concurrently, each one should not be able to see the
incomplete changes made by others. For example, if one transaction is busy totalling all the branch
balances, it would not do for it to include the debit from Alice's branch but not the credit to Bob's
branch, nor vice versa. So transactions must be all-or-nothing not only in terms of their permanent
effect on the database, but also in terms of their visibility asthey happen. The updates made so far by
an open transaction are invisible to other transactions until the transaction completes, whereupon all
the updates become visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with
BEGQ Nand COVMM T commands. So our banking transaction would actually look like:

BEG N;

UPDATE accounts SET bal ance = bal ance - 100. 00
VWHERE nanme = 'Alice';

-- etc etc

COW T;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice's balance went negative), we can issue the command ROLLBACK instead of COVM T, and all
our updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within atransaction. If you do not
issue a BEG N command, then each individual statement has an implicit BEG N and (if successful)
COWM T wrapped around it. A group of statements surrounded by BEG Nand COVM T is sometimes
called atransaction block.

Note

Some client libraries issue BEG N and COMM T commands automatically, so that you might
get the effect of transaction blocks without asking. Check the documentation for the interface
you are using.

It's possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint with SAVEPQO NT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction's database changes between defining the savepoint and rolling
back to it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won't need to roll back to a particular savepoint again, it can be
released, so the system can free some resources. Keep in mind that either releasing or rolling back to
asavepoint will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible asaunit to other
sessions, while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice's account, and credit Bob's
account, only to find later that we should have credited Wally's account. We could do it using
savepoints like this:

BEG N,

UPDATE accounts SET bal ance = bal ance - 100. 00
VWHERE nane = 'Alice';

SAVEPQO NT ny_savepoi nt;

19

Advanced Features

UPDATE accounts SET bal ance = bal ance + 100. 00
VWHERE nanme = ' Bob';

-- oops ... forget that and use Wally's account

ROLLBACK TO ny_savepoi nt;

UPDATE accounts SET bal ance = bal ance + 100. 00
WHERE nane = 'Vally';

COW T;

Thisexampleis, of course, oversimplified, but there's alot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO s the only way to regain control of a
transaction block that was put in aborted state by the system due to an error, short of rolling it back
completely and starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. Thisis comparable to the type of calculation that can be done with an aggregate function.
However, window functions do not cause rows to become grouped into a single output row like non-
window aggregate calls would. Instead, the rows retain their separate identities. Behind the scenes,
the window function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee's salary with the average salary in his
or her department:

SELECT depnane, enpno, salary, avg(salary) OVER (PARTI TI ON BY
depnane) FROM enpsal ary;

depnane | enmpno | salary | avg
----------- T
devel op | 11 | 5200 | 5020. 0000000000000000
devel op | 7| 4200 | 5020.0000000000000000
devel op | 9 | 4500 | 5020. 0000000000000000
devel op | 8 | 6000 | 5020. 0000000000000000
devel op | 10 | 5200 | 5020. 0000000000000000
personnel | 5| 3500 | 3700. 0000000000000000
personnel | 2| 3900 | 3700. 0000000000000000
sal es | 3| 4800 | 4866.6666666666666667
sal es | 1] 5000 | 4866.6666666666666667
sal es | 4 | 4800 | 4866.6666666666666667
(10 rows)

Thefirst three output columns come directly from the tableenpsal ar y, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows
that have the same depnane value as the current row. (This actually is the same function as the
non-window avg aggregate, but the OVER clause causes it to be treated as a window function and
computed across the window frame.)

A window function call aways contains an OVER clause directly following the window function's
name and argument(s). This is what syntactically distinguishes it from a normal function or non-
window aggregate. The OVER clause determines exactly how the rows of the query are split up for
processing by the window function. The PARTI Tl ON BY clause within OVER divides the rows into
groups, or partitions, that share the same values of the PARTI TI ON BY expression(s). For each row,
the window function is computed across the rows that fall into the same partition as the current row.

You can aso control the order in which rows are processed by window functions using ORDER BY
within OVER. (The window ORDER BY does not even have to match the order in which the rows are
output.) Hereis an example:

20

Advanced Features

SELECT depnane, enpno, salary,
row_number () OVER (PARTI TI ON BY depname ORDER BY sal ary
DESC)
FROM enpsal ary;

depname | enpno | salary | row _numnber
----------- Fom e e e e -
devel op | 8 | 6000 | 1
devel op | 10 | 5200 | 2
devel op | 11 | 5200 | 3
devel op | 9 | 4500 | 4
devel op | 7 | 4200 | 5
personnel | 2| 3900 | 1
personnel | 5] 3500 | 2
sal es | 1| 5000 | 1
sal es | 4 | 4800 | 2
sal es | 3| 4800 | 3
(10 rows)

As shown here, the r ow_nunber window function assigns sequential numbers to the rows within
each partition, in the order defined by the ORDER BY clause (with tied rows numbered in an
unspecified order). r ow_nunber needs no explicit parameter, because its behavior is entirely
determined by the OVER clause.

The rows considered by a window function are those of the “virtual table” produced by the query's
FROMclause asfiltered by its WHERE, GROUP BY, and HAVI NG clausesif any. For example, arow
removed because it does not meet the WHERE condition is not seen by any window function. A query
can contain multiple window functions that slice up the data in different ways using different OVER
clauses, but they all act on the same collection of rows defined by this virtual table.

We already saw that ORDER BY can be omitted if the ordering of rows is not important. It is also
possible to omit PARTI TI ON BY, in which case there is asingle partition containing al rows.

There is another important concept associated with window functions: for each row, there is a set of
rows within its partition called its window frame. Some window functions act only on the rows of the
window frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame
consists of all rows from the start of the partition up through the current row, plus any following rows
that are equal to the current row according to the ORDER BY clause. When ORDER BY is omitted the
default frame consists of all rows in the partition. 'Hereisan exampleusing sum

SELECT sal ary, sun{salary) OVER () FROM enpsal ary;

salary | sum

________ .
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100

! There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

21

Advanced Features

5200 | 47100
(10 rows)

Above, sincethereisno ORDER BY inthe OVER clause, the window frameisthe same asthe partition,
which for lack of PARTI TI ON BY is the whole table; in other words each sum is taken over the
whole table and so we get the same result for each output row. But if we add an ORDER BY clause,
we get very different results:

SELECT sal ary, sun{salary) OVER (ORDER BY sal ary) FROM enpsal ary;

salary | sum

________ Fom e m - -
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100

(10 rows)

Herethe sumistaken fromthefirst (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query.
They are forbidden elsewhere, such asin GROUP BY, HAVI NG and WHERE clauses. Thisis because
they logically execute after the processing of those clauses. Also, window functions execute after
non-window aggregate functions. This means it is valid to include an aggregate function call in the
arguments of awindow function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depnane, enpno, salary, enroll _date
FROM
(SELECT depnane, enpno, salary, enroll _date,
row_nunber () OVER (PARTI TI ON BY depnanme ORDER BY sal ary DESC,
enpno) AS pos
FROM enpsal ary
) AS ss
WHERE pos < 3;

The above query only shows the rows from the inner query having r ow_nunber less than 3 (that
is, the first two rows for each department).

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for
severa functions. Instead, each windowing behavior can be named in a W NDOWclause and then
referenced in OVER. For example:

SELECT sun{sal ary) OVER w, avg(salary) OVER w
FROM enpsal ary
W NDOW w AS (PARTI TI ON BY depnane ORDER BY sal ary DESC);

22

Advanced Features

More details about window functions can be found in Section 4.2.8, Section 9.22, Section 7.2.5, and
the SELECT reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let's create two tables: A tableci ti es and atable capi t al s. Naturaly, capitals are also cities,
S0 you want some way to show the capitals implicitly when you list all cities. If you're really clever
you might invent some scheme like this;

CREATE TABLE capitals (

nane t ext,

popul ati on real,

el evation int, -- (in ft)
state char (2)

)

CREATE TABLE non_capitals (

nane t ext,
popul ati on real,
el evation int -- (in ft)

);

CREATE VIEWcities AS
SELECT nane, popul ation, elevation FROM capitals
UNI ON
SELECT nane, popul ation, elevation FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update severa rows, for
one thing.

A better solution isthis:

CREATE TABLE cities (

nane t ext,
popul ati on real,
el evation int -- (in ft)

);

CREATE TABLE capitals (
state char (2) UNI QUE NOT NULL
) INHERI TS (cities);

Inthiscase, arow of capi t al s inheritsall columns(nane, popul ati on,andel evat i on)from
its parent, ci t i es. The type of the column nane ist ext, a native PostgreSQL type for variable
length character strings. The capi t al s table has an additional column, st at e, which shows its
state abbreviation. In PostgreSQL, a table can inherit from zero or more other tables.

For example, the following query findsthe names of all cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT nane, el evation
FROM ci ti es
VWHERE el evati on > 500;

23

Advanced Features

which returns:

nane | elevation
___________ P,
Las Vegas | 2174
Mari posa | 1953
Madi son | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an elevation over 500 feet:

SELECT nane, el evation
FROM ONLY cities
VWHERE el evati on > 500;

nane | elevation
___________ P,
Las Vegas | 2174
Mari posa | 1953
(2 rows)

Herethe ONLY beforeci t i es indicatesthat the query should berun over only theci t i es table, and
not tables below ci t i es in the inheritance hierarchy. Many of the commands that we have aready
discussed — SELECT, UPDATE, and DELETE — support this ONLY notation.

Note

Although inheritanceis frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.11 for more detail.

3.7. Conclusion

PostgreSQL has many features not touched upon in thistutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site? for links to
MOre resources.

2 https://www.postgresgl.org

24

https://www.postgresql.org
https://www.postgresql.org

Part Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL . We start with describing the general syntax of
SQL, then how to create tables, how to populate the database, and how to query it. The middle part lists the
available data types and functions for use in SQL commands. Lastly, we address several aspects of importance
for tuning a database.

The information is arranged so that a novice user can follow it from start to end and gain a full understanding
of the topics without having to refer forward too many times. The chapters are intended to be self-contained, so
that advanced users can read the chapters individually as they choose. The information is presented in narrative
form with topical units. Readers looking for a complete description of a particular command are encouraged to
review the Part V1.

Readers should know how to connect to a PostgreSQL database and issue SQL commands. Readers that are
unfamiliar with these issues are encouraged to read Part | first. SQL commands are typically entered using the
PostgreSQL interactive terminal psgl, but other programs that have similar functionality can be used as well.

Table of Contents

A, SQL SYNEBX +.tueeeeeti ettt ettt e e et e e ettt ettt et e e e et e et e e e e e e e e eabn e eene 33
A1, LeXiCal SIUCTUME ...ttt ettt e e 33
4.1.1. Identifiers and Ky WOIASuieiiiiiieiiiiiieceei et 33
.02, CONSLANESeeree ettt ettt 35
40,3, OPEIELOISeieeeeei ettt ettt et 40
4.1.4. SPECial CharaCler'S ... oceeeei ettt et 40
.05, COMMENES ...eetiieiti ettt ettt e e et e e e e e e e eaa s 41
4.1.6. OPErator PrECEOBNCEcceiti ettt ettt e e e eeees 41

4.2, VAlUE EXPIESSIONSceiitieetiiti ettt e ettt e ettt e et e ettt e e et e et eab e e eennaaaaees 42
4.2.1. ColUMN REFEIEINCEScovviieiiii e 43
4.2.2. POSItiONal PalraMELErSuiiiiiiiieieii et 43
4.2.3. SUDSCIIPES ettt ettt e 44
424, Field SEIECHON ...t 44
4.2.5. OPErator INVOCAHONScevuueiiitiieieiii ettt e e e eenees 45
4.2.6. FUNCHON CallS .. .ceiiiiiiiiii e 45
4.2.7. AQOregate EXPIESSIONScccuuuieiiitiieeiiti e ee ettt e et e ettt eeeeti e e eeaiaeeees 45
4.2.8. Window FUNCLION CallSuiiiiiiiieiiiie e 48
4.2.9. TYPR CaASLS ..cvtiiiieeet et 50
4.2.10. Collation EXPreESSIONSocieueeeieiiieee ettt 51
4.2.11. SCAlAr SUDQUENTESeeeeieieei ettt 52
4.2.12. Array CONSIIUCLOISccvuiieieieie ettt et e e e e 52
4.2.13. ROW CONSITUCTONS ...eeuiieieiei et ettt e e e 54
4.2.14. Expression Evaluation RUIEScoouviiiiiiiii e 55

4.3, CalliNg FUNCLIONS ...ttt e e e 56
4.3.1. Using Positional NOEHIONccceuuuieiiiiiieeiii et 57
4.3.2. Using Named NOLAIONuuiiiiiiiiiieiiii e e e 57
4.3.3. USINg MiXed NOLALIONuuiiiiiiiieiiiii e 58

5. Dat@ DEFINITION ..ottt et e aaas 59
5.1 TADIE BASICS ..ttt ettt 59
5.2, DEFAUIT VAIUBS ...t 60
5.3, 1dentity COIUMNS ...ttt e s 61
5.4. Generated COIUMNScoiitiiiiii e e 62
5.5, CONSITAINTS ..ttt ettt ettt e et e et e et et eeena s 64
5.5.1. Check CONSIIAINTScevuieiiiiiiee et e ettt et e et eeeri e eees 64
5.5.2. NO-NUII CONSIFAINES ...cceveieieiii et 66
5.5.3. UNIQUE CONSITAINESeevtieiiiiie ettt 67
B5.5.4, PrIMAarY KEYS ...t 69
5.5.5. FOrEigN KEYS ...t 70
5.5.6. EXCIUSION CONSITAINTScevvueiiiiiee ettt e e 73

5.6. SYStEM COIUMNS ...ttt e e et e e et e e ent e eees 74
5.7. MOAifying TablES ... e 74
5.7.1. AddiNg @ COIUMNooviiiiiiii e e 75
5.7.2. RemMOVING @ COIUMNoouiiiiiii et 75
5.7.3. AddiNg @ CONSIFAINTccevuiiiiiiiie et 76
5.7.4. RemoviNg @ CONSIIAINTccovvuiiiiiiiieeii e 76
5.7.5. Changing a Column's Default Valueccovvviiiiiiiiiiiciii e 76
5.7.6. Changing a Column'S Data TYPEc.uuneiiiiiiieiiiiie e 77
5.7.7. Renaming @ COIUMINcoiiiiiiiiii e 77
5.7.8. ReNaMiNg @ TahI€ccovuiiiiiiii e 77

5.8, PrIVIIEOES ... e 77
5.9. ROW SeCUNity POIICIESuuiiiiii e 82
B5.10. SCNEIMBS ...ttt ettt et 88
5.10.1. Creating @ SCHEMAuuuiiiiiiiieee ittt 89
5.10.2. The PUBIIC SChEMacoooviiiiii e 90
5.10.3. The Schema Search Pathccoouiiiiiiiiii e 90

26

The SQL Language

5.10.4. Schemas and PriVIlEgESovvun i 91
5.10.5. The System Catalog SChemacccooveiiiiiiiiii e 92
5.10.6. USAQE PalteIMS .. cviiiiiiiiiice e 92

I O = o 4 7= o 1 1 Y PP 93
oI B 1 1=) = Lo PRSPPI 93
oI O O Y= (PP 96

5.12. Table Partitioningoevuuiiiiieiie e e e e e e e 96
B.12. 1. OVEIVIEIW L.ttt ettt ettt e e ettt e e e e et e e e e et neeeeebe s e eaeataneeaees 96
5.12.2. Declarative Partitioningcocouuiiiiiiiiiiiciir e 97
5.12.3. Partitioning Using INNEritanCecccoeeviiiiiiiciieec e 102
5.12.4. Partition Pruningooiuiiiii i ee e e e e e e e e e e e e e eeen 107
5.12.5. Partitioning and Constraint EXCIUSIONcooevviiiiiiieiinccce e 108
5.12.6. Best Practices for Declarative Partitioningc.cccoveveiieiiiciiineiineeen, 109

I T = o (= To | N I - U 110
5.14. Other Database ODJECISu.iivnieiii e 110
5.15. DePendenCy TraCKingc..eiuuiiii e ee e ee e e e e e e e st e e e e e e e et eeaneees 111
6. Data ManipUIAioNoiiiiiiiii e e e e e e e e e e e e e e e e e e ee 113
L 1S g To [D - - Y 113
S UL o = (] o I T - L 114
SRCR D= I (] oo - - P 115
6.4. Returning Data from Modified ROWSccoviiiiiiiiiicie e 115
2O 1 = 1= 117
7.0 OVEIVIBIW ..ottt ettt e ettt e e e et n e e e et e e e e et n e e e aa e e eaaan s 117
7.2. TahIE EXPIrESSIONSivviiiiie e e e e e e e e e e e e e e e e et e e e e e e aens 117
7.2.1. TRE FROMCIBLISE .. .eevvieeeeii ettt 118
7.2.2. TREVWHERE ClalSE ...ccvviieiiiiiieeeeeie ettt 126
7.2.3. The GROUP BY and HAVI NG ClaUSESoevvvviieeiiiieeeeiiie e ee et e e 127
7.2.4. GROUPI NG SETS, CUBE, and ROLLUPcoiiiiiiiiiiiii e 130
7.2.5. Window FUNCEION ProCESSINGccvuiiiieiiiiecii e e e e e e 133

SRS = < ox B I £ PR 133
7.3. 1. SEECE-LiSt ItOMS coevviieiieii e 133
7.3.2. COlUMN LADEIS ..oeviieiiii et 134
7.3.3. DESTINCT it e e e et eeeaanns 134

7.4. Combining Queries (UNI ON, | NTERSECT, EXCEPT)cooviviiieeiiiiineeveiiieeeeeiinnnn 135
7.5. Sorting ROWS (ORDER BY) ...iiiiiiiiii i e e e e e e 136
T76. LIM T @nNd OFFSET ..ovniiiiiiiiieii et e e e eeeaa e eees 137
TV A/ O S R I £ PSP 137
7.8. W TH Queries (Common Table EXPreSSions)cvevuueeeuiieeiiieiiieeeiiesiineesneenenns 138
7.8.1L SELECT INW TH .ot 139
7.8.2. RECUISIVE QUENIES ...uuiiiiieiii et e e e e e e e e e e e eeen 139
7.8.3. Common Table Expression Materiaizationccooeeeveiiiniiiiniiiieennnnn, 144
7.8.4. Data-Modifying Statements in W THcoooiiiiiii i, 145

S T D= = T)Y/ 0 P 148
300 O N0 0= o Y o= 149
e I 1 011 o = g Y/ o1 PRSP 150
8.1.2. Arbitrary Precision NUMbBErSc.ooiiiiiiiiii e 150
8.1.3. Floating-POINt TYPES .cvvniiii e 152

8. LA SEIA TYPES ettt 154

e I o g1 = 1Y o< T PPN 155
G I O == ot (= G Y/ o= P 156
8.4. BINAry Dala TYPES ..uuciiiieii ettt et e e e e e e e e e e et e eaen 158
8.4.1. byt €a HEX FOIMauiiiiiiiii i e 158
8.4.2. byt ea ESCape FOrMALccvvuiiiiiieii e 158

R = (=l T2 1T Y/ o= P 160
8.5.1. Date/TimeE INPULevvneiiii e e e e e e e e e eaneees 161
8.5.2. DAE/TIME OULPULueieiiieeeeiiie et et e e et e e et e e e eat e e e eaan e eeeenns 165
8.5.3. TIME ZONES ... ittt e e e e e e aaens 166
8.5.4. Interval INPULcovtiiii e e 167

27

The SQL Language

8.5.5. INTEIVAl OULPULuvieiiiiiieee ettt e e e e e s 169
S = ToTo = Y/ o= P 170
A 1000 = =0 B Y/ o= 171
8.7.1. Declaration of Enumerated TYPESccuuiviiiiiiieii e 171
A @ (o[41 o PN 171
B.7.3. TYPE SAFELY eeeveieeieii ettt 172
8.7.4. Implementation DELalSveiiiiiiii e 172
R CTc o0 0= (o Y o1 173
B.8.L. POINES ...ttt 173
882, LINES ittt 173
8.8.3. LiNE SEgMENLSceviiiiii i e 174
8.8, BOXES ...ttt ettt ettt 174
B.8.5. PalNS ...t 174
8.8.6. POIYQONS .. .oviiii e 174
B.8.7. CICIES ittt 175
8.9. NEtWOIK AdOreSS TYPES .evuiiiiieiiiieei et e e e e e e e e e e e e e e e eaans 175
S I R T 1= PP 175
S o3 i | PP 176
8.9.3. 1 NEL VS Cl Al et 176
S I 1= U= o o | PP PP 176
8.9.5. MACAUAN 8 .ouiiiiiiii e 177
8.10. Bit SING TYPES . iittiiiieei et e e e e e e e e e e e et e e e ean s 178
8.11. TeXt SEArCh TYPES evniii i 178
00 O A= VT o3 A o TP 178
S I 2 A=Y o [1= P 180
ST 2 U1 1 T Y/ o U PTRSPN 181
ST Q1 I 1Y/ o= PP 182
8.13.1. Creating XML ValUESoviiiiieiiiii e 182
8.13.2. Encoding Handlingcovuiiiiiiiiii e 183
8.13.3. AcCeSSING XML ValUESciveiiiiieie e 184
ST N S O NI Y/ o=~ 184
8.14.1. JSON Input and OULPUE SYNEAXeeveeiiiieiiii e e e e 185
8.14.2. Designing JSON DOCUMENTScvvueeineiiiieiiee e e eeine e e et ee e e eaaneeaens 186
8.14.3.] sonb Containment and EXIStENCEccvvviiiiiiiiiii e 187
8.14.4. | SOND INUEXING ..uvviiiiiee e e e 188
8.14.5. | SOND SUDSCIIPLING ..vuviieeii e e e e e aens 191
8.14.6. TraNSfOMIS .. ettt e 192
8.14.7. JSONPAEN TYPE . eveicii e 193
e I LN ¢ = Y ST PTRN 194
8.15.1. Declaration Of Array TYPES ...ceuuiiiiiieiiiieeie e e e e e e e e e e e 194
8.15.2. Array ValUB INPULcovviiii e 195
8.15.3. ACCESSING ATTAYS .vueivneiiieeeiiee et e et e e et e e e e e st e e e e e e et e e st e eeanaeeaes 197
8.15.4. MOAITYING ATTAYS ..uieiieii et e e e e e e e e e e e e e e ees 199
8.15.5. SEarChiNG IN ATTAYS «.ouuiiiii e e e e e e aens 201
8.15.6. Array Input and OULPUL SYNEAXcevvneeeinieiiieeeiiieciieee e e e eaaeeeens 203
8.16. COMPOSITE TYPES .vvuiiineeit ettt ettt e et e e e te e et aeeat e e et e e et e e et e eanaeeateeeaneeeenaes 204
8.16.1. Declaration of COmMPOSItE TYPES ...cvvvuiiiieiii e e e e e e e e 204
8.16.2. Constructing Composite ValUEScceuviiviiiieiiieiiiiieeie e 205
8.16.3. AccesSiNg COMPOSIEE TYPES ...vvvuiiiiieiiieeiie e e e e e e et e e e e e eanas 206
8.16.4. Modifying COmMPOSItE TYPEScvvvieiiiieiiiieeeiee e e e e e e e 206
8.16.5. Using Composite TYPeS iN QUENEScouuuveiineeiiiieeiii e e e e e e e 207
8.16.6. Composite Type Input and Output SYNtaXxcceevvvveeiieiiieriiieeiieennn. 209
8.7, RANGE TYPES .ottt 210
8.17.1. Built-in Range and MUItirange TYPES «....uvvvreiiiieriiieeeie e e e eaenns 210
8.17.2. EXAMPIES ...t 211
8.17.3. Inclusive and EXCIUSIVE BOUNGSvveiiiiiiieiiiiineeciiie e 211
8.17.4. Infinite (Unbounded) RaNGESocivviiiiiiiiiii e 211
8.17.5. Range INPUL/OULPULcovuiiieeii e e e e e e e e e e 212

28

The SQL Language

8.17.6. Constructing Ranges and MUILirangesSccoevvveiiiiieiiiieii e, 213
8.17.7. DISCrete RANGE TYPES .. vvvneiii i et et e e e e e e e e et e e e eaaas 213
8.17.8. Defining New RaNGE TYPEScvvviiiii et e e e 214
8.17.9. INAEXING ...vuiii i 215
8.17.10. COonStraintS 0N RANGESu.ivvueiiieiiieeiee e e e e e e e e e eaaeee 215

TR0 T I T4 F= T T Y 0 1= 216
8.19. ObjeCt 1AENtifIEr TYPES c.vuiiiii e e e eaaas 217
<320 o To TN =Y 2 N 1Y/ o= 219
ST T e =0 (o 0l 1N o1 219
LI 0 g Tex [0 g 5= 0 1o @ o= = o TP 222
1o I oo Tor= I @ o= = (o) £ S 222
9.2. Comparison FUNCtions and OPEratorsSeeeuueeeiieiiieeeiiee e e e e e e e eaneenes 223
9.3. Mathematical Functions and OPEratorSevvuiieiiiieeiii e e e e 227
9.4. String FUNCLioNS and OPEIAtOrSu.cvuuieiiiieeiiieeii e e e e e e e e e e et e eaneens 235
LS T o T 112 PP PTRPPPRN 243

9.5. Binary String FUnctions and OPEratorsSccuuveiuuieiiineeiiieieiieeeiieeeieeraineesanens 246
9.6. Bit String FUNCtions and OPEratorsuuveiuiieiiiieeii e e e e e e e e e e 250
A = (= 1 T\ (11 o P 252
S O I PP 252
9.7.2. SIM LAR TORegular EXPreSSIONScvvvuieiiieeeiiieeiiieeeiieesineesineesaneens 254
9.7.3. POSIX ReguIar EXPreSSIONSuuiiiueiiiieiiiieeiieeeinesieeeiaeeaineesaneesens 256

9.8. Data Type Formatting FUNCLIONSccovviiiiiiii e e e 271
9.9. Date/Time FUNCtions and OPEratorSuveiuuieiiiieiiiiee e e ee e e e e eaeens 280
9.9.1. EXTRACT, dat € _Part ..oiciiiiiiiiieiii e e e aens 287
0.9.2. dAt € LT UNC .iiiieiii e e e 291
0.9.3. dat @ DI N oo 292
9.9.4. AT TIME ZONE and AT LOCALcoooiiiiiiiieiiiiie e 293
9.9.5. CUITENt DA/ TIME ...evvnieiiiii e e et e eana e 295
9.9.6. Delaying EXECULIONoivuueiiie i e e e e e e e e e e e e e e eees 296

9.10. ENUM SUPPOIt FUNCLIONScvticiiieci e e e e e e e e e e e aans 297
9.11. Geometric FUNCtioNS and OPEratOrSevvuneiiiieiieeeiiee e e e e e eee e eaneeaens 298
9.12. Network Address Functions and OPEratorsScc.uveevuieiviieeiiieeeiieeeeeeaieeaenns 305
9.13. Text Search FUNCioNS anNd OPEratOrSueevvnieiiiieiiiieeie e eeeee e e e e e e 308
9.14. UUID FUNCLIONSieeitiiieeeiii e ettt e et s e e et e e e e aan e e e et e 314
9.15. XML FUNCLIONS ... eiiiiiieee ittt e e e e et e e e et e e e et 315
9.15.1. Producing XML CONENLcccuuiiiiieiieeiii e e e e e e e e e e e eaen 315
9.15.2. XML PrediCatesuuieiiiiieeeii et e et e e e e e 320
9.15.3. ProCesSiNg XML ...uuuiiiiiiiiiiiii et 322
9.15.4. Mapping TableSto XMLcvvniiiiiicii e 326

9.16. JSON FUNCLiONS aNd OPEraIOrScvvvneiiieeeieeeieeeieeeaee et e e e e et ee e et e e e eeens 330
9.16.1. Processing and Creating JSON Dafacc.vevevneiiiiieiiiieeiieeeneeeiee e 331
9.16.2. The SQL/JSON Path Languagecceuueiiiieiieeiiiieeiieeeieeeaineeaaeeeens 343
9.16.3. SQL/JSON QUErY FUNCHIONScevviiiiiiciii e e e e 355
9.16.4. JISON_TABLE ..ot 357

9.17. Sequence Manipulation FUNCLIONSooviiiiiiiiici e 363
9.18. Conditional EXPrESSIONSuuiiiuiieiiiieiii e e e e e e e e e e e e e e eaens 364
O.18. 1. CASE ...ttt 365
9.18.2. COALESCEciiiiiiieiiii ettt e et e e et e e et e e eaan s 366

0 ST U I P 367
9.18.4. GREATEST and LEAST ...uiiiiiiiiieeiii ettt e e 367

9.19. Array FUNCtioNS and OPEIralorSccuuieiiuieiiieeiie e e e e e e e e e e e s eeenes 367
9.20. Range/Multirange Functions and OPEratorsSc..uvevvuieiiineeiieesiieeeieeeaieeeaenns 371
9.21. AQQregate FUNCLIONScoun i e e e e e e e eaes 377
9.22. WINAOW FUNCHIONSvuieiiiiii e ettt e et e e e et e e e eai e eeees 385
9.23. Merge SUPPOIt FUNCLIONSiiiieii e e e e e e e e e e e e e e 386
9.24. SUDQUENY EXPrESSIONS . .vuueiiiiieiiieeiieet e e et e e e e e e e et e e e e et e e et e e st e e anaeeannas 387
0.24. 1. EXI STS ittt ettt 387
0.24.2. I N 1ottt 388

29

The SQL Language

9.24.3. NOT | N Lot 388
9.24.4. ANY/ISONEuiiiiiiiieeeiee et ettt e e e et e e e e e e eeeen 389
O.24.5. ALL oriiiiiii et 389
9.24.6. SINGIE-ROW COMPAITSONccvvieiiiieeii e ee e e e e e e e et e e e e aees 390

9.25. Row and Array COMPAISONScvuuieiiieriteeritieeeieeeteestresateeaneeetaeeanaesennes 390
0,25, L. I N ettt 390
9.25.2. NOT | N Loiiiiii e e s 390
9.25.3. ANY/SOVE (BITAY) +oeevvvneteerinieeeeiiaeeeitnaeeeain s e eeatnaeeeaineeeerinaeserenns 391
O.25.4. ALL (BITAY) +evvvnieeiitiiee et e e ettt s ettt e e et s e e et s e e et s e e e et e e e aae 391
9.25.5. Row Constructor COMPAariSONeeeuuierinieriieeriiieesiiee e esineeeaneeannnas 391
9.25.6. Composite Type COMPAiSONcevuueiiiieiiiieeiieeeiie e e e e e eaneeaenns 392

9.26. Set REtUrNING FUNCHIONSo.viiiiecc e e e eeens 392
9.27. System Information Functions and OPEratorsScc.uveevuieiiinieeiieeeiiieriineeannens 396
9.27.1. Session INformation FUNCLIONSveiiiiiiieiiiine e e e 396
9.27.2. Access Privilege Inquiry FUNCLIONSccoiviiiiieiiiiccie e 399
9.27.3. Schema Visibility Inquiry FUNCHIONScoooviiiiiiiciiie e 402
9.27.4. System Catalog Information FUNCLIONSccccovviiiiieiiinccieec e, 403
9.27.5. Object Information and Addressing FUNCIONScccooevvieiiiiieiieeiinnens 409
9.27.6. Comment Information FUNCLIONSooovviviiiiiiiiiieeece e 411
9.27.7. Data Validity Checking FUNCLIONSoveivieiiiieiii e 411
9.27.8. Transaction ID and Snapshot Information Functionscccoeeeevnnee. 412
9.27.9. Committed Transaction Information FUNCLIONScccovveiiiiiiieiiiiieees 414
9.27.10. Control Data FUNCHIONSuiiiiiiii i 414
9.27.11. Version Information FUNCLIONScovvvvviiiiiiiiieieiiin e 416
9.27.12. WAL Summarization Information FUNCLIONSccovvvvieeiiiinneeeiiinnnn. 416

9.28. System Administration FUNCHIONSccuuiiiiiiiiiii e e e e 417
9.28.1. Configuration SettingS FUNCLIONSccviviiiieiiie e, 417
9.28.2. Server Signaling FUNCLIONSoivviiiiiicce e 418
9.28.3. Backup Control FUNCLIONSiiiiieiiiec e 421
9.28.4. Recovery Control FUNCLONSocvvviiiieiiii e e 423
9.28.5. Snapshot Synchronization FUNCLIONSc.oveviiieiiiieiiiec e, 425
9.28.6. Replication Management FUNCLIONScccviviiiiiiiie e, 426
9.28.7. Database Object Management FUNCLIONScc.ovevvieiiiieciiiecc e, 429
9.28.8. Index Mantenance FUNCLIONSoveviuinieiiiineeeei e e eeeenns 434
9.28.9. Generic File ACCESS FUNCHIONSiiiiiiiiciiiiin e 434
9.28.10. AdVisory LOCK FUNCHIONScccuiiiieiii e e e 437

9.29. Trigger FUNCLIONSuuiii i e e e e e e et e e et e et e e e e e eanas 438
9.30. Event Trigger FUNCLIONSuiiii e e e e e e e 439
9.30.1. Capturing Changes at Command Endcocoiiiiiiiiiiiiiiiiccieeeees 439
9.30.2. Processing Objects Dropped by a DDL Commandccocevvvviiineennnnnns 440
9.30.3. Handling a Table ReWrite EVENtcciviiiiieiiii e, 442

9.31. Statistics INfOrmation FUNCLIONSiiiiiiiiieiii e 442
9.31.1. InSPECEiNg MCV LiStS ..uuiiviieiiiicii i e e 442

O Y/ oL @0 517/ = T o P 444
FO. 1. OVEIVIBIW Loueieiite ettt e e ettt e e et e e e e et e e e e et e e e e et e e e eeteaeeeees 444
J0.2, P OIS v vttt ettt et et 445
L0 R ¢ o] 0 L SRR 449
O R NI (o] = o =S 453
10.5. UNI ON, CASE, and Related CONSITUCESuuveveiiiieiiiiieeeceie e 454
10.6. SELECT OULPUL COIUMNSciiiiciii e e e e et e e e e e e eaa e 455
T o (== PSP 457
0 O oo (0 1o USRS 457
2 1 o L= G Y/ o === P 458
O e I = = PP 458
L1.2.2. HASN oo 459
2 TR €11 PSPPI 459
S 1 PP 459
L1125, GIN i e 459

30

The SQL Language

2 G I =T I USSP 460

11.3. MUItICOIUMN INAEXESeeevviee ettt e e e e eaeen 460
11.4. Indexes and ORDER BYoiivviiiiiiiieeiiieiiiie s e e et s e e e e e et eeeaaeaaaee 461
11.5. Combining MUItiple INAEXESciiiiiiiii e 462
12.6. UNIQUE INAEXESuiiiieeii et e e e e e e e e e e e eaens 463
11.7. INAEXES ON EXPrESSIONSuiviiieiieeei e e e e e e e e e e e e e et e e e e e e aens 463
11.8. Partial INOEXES .. .oeveviieiiiii ettt et e e e e eaaens 464
11.9. Index-Only Scans and Covering INAEXEScc.uvvviiiiiiiieiii e 467
11.10. Operator Classes and Operator FamilieSccooevvieiiiiiiiiii e, 470
11.11. Indexes and COll@tioNSuieiiiiiiee e 471
11.12. EXxamining INAeX USAQEuuiviinieiiiiiiii e e e e e e e e e e e e e e aaas 472
B B I G S =T oo 473
25 O 1 oo (0 o TSP 473
12.1.1. What 1S @ DOCUMENE? ..euueiiiii ettt e e e 474
12.1.2. Basic Text MatChingoovvuiiiiii e 474
12.1.3. CONfiQUIBLIONS .. .euuiiiieeiie e e e e e e e e e e e e e e et e e e e e e eeens 476

12.2. TAhleS @A INOEXES .. .vevveiei et e et 477
12.2.1. Searching @ Table ...couvniii e a77
12.2.2. Creating INAEXES ... cvveeiii et e e e e e e e aes 478

12.3. Controlling TeXt SEarChccooviiii i 479
12.3.1. ParSiNg DOCUMENESiiiiiii e e e e e e e e e e et e e e e eens 479
12.3.2. ParSiNGg QUETTES .. .cvuiiii i ciii e ettt e e e e e e e e e e e e 480
12.3.3. Ranking Search RESUISvviviiiiic e 483
12.3.4. Highlighting RESUILSccvviiiiicei e e 485

12,4, AdAItioNal FEAIUMESvuuieeiii et e e 486
12.4.1. Manipulating DOCUMENESuuiiiiiieiieeii e e e e et e e e 486
12.4.2. Manipulating QUENIESccuueiiiiiei e e e e 487
12.4.3. Triggers for Automatic Updatesceevvieiiieiiiieiiii e eie e 490
12.4.4. Gathering DocUMENt StaliStiCS ...vvuvivnieiiieii e e 491

T T = U SPPPRRN 492
N T B T Lo g = = PP 493
12.6.1. SIOP WOIAS ...cevneiiieii et e e e e e e e e e e e et e e e e e aanaees 494
12.6.2. SIMPIE DICHIONAIY .vuuiiiiieei e e e e e e e e eanees 495
12.6.3. SYNONYM DICHIONANYvuiiiiieeiiieiiie e e e e e e e e e e e e eanas 496
12.6.4. TheSaUrus DiCtONANYcccuuiiiiiieii e e e e e 498
12.6.5. ISPEI DICHONAIY ...cvvniiiiiieiie e e e e e 500
12.6.6. SNOWDaEll DICHIONAIYcvvveiiiiceii e aens 502

12.7. Configuration EXAMPIEccuuiiiiieie e e 503
12.8. Testing and Debugging Text Searchcocoviiiii i, 504
12.8.1. Configuration TESLNGcvvueiiiieeiii e e e e e e e e e eanas 504
12.8.2. ParSer TESHNG «.ovvvvvveeeneieeeeeeeeeiiias s e e e eeeeeattas e e s e e e eeasaatn s e e eeeeeeannennnns 507
TG B Tox i [0) 4 = VA = (Vo [P 508

12.9. Preferred Index Types for Text SEarchc.ovvviiiiiiiii e, 509
2250 O T 1= o [T o] oo o 510
2 O T 1] = o) PP 513
13. ConCUrENCY CONLIOLuiie i e e e e e e e e e e et e e e e e st e e e e e aaeeaes 515
30 O 1 oo (0 1o ST SPPPN 515
13.2. TransaCtion I1SOIAHONccuvuieiiii e e 515
13.2.1. Read Committed ISOlation LEVEluovviiiiiiiiiiiiiiecc e 516
13.2.2. Repeatable Read 1S0lation LEVElcccoviiiiiiiiiiicee e, 518
13.2.3. Serializable [S0lation LEVE!ooveviiiiiiiiii e 519

CTC I (ol [T I o Vo P 521
13.3.1. TaADIE-LEVE LOCKS ..oevvuiieeii ettt 521
13.3.2. ROW-LEVE LOCKS ...iivviieeiiiii et 524
13.3.3. Page-Level LOCKSciiiiiii it 525
13.3.4. DEAAIOCKS ...uuieeeeiieeii ettt e e e e e e e e e e e e e e e e e e anaaa 525
13.3.5. AQVISONY LOCKS ...uuiiiiiiii e e e e e e e e e e e eens 526

13.4. Data Consistency Checks at the Application Levelc.cocoveiiiiiiiniineceeen, 527

31

The SQL Language

13.4.1. Enforcing Consistency with Serializable Transactionscccccevvveeee. 527
13.4.2. Enforcing Consistency with Explicit Blocking LOCKSccoccvvieinnnnenn. 528

13.5. Seridization Failure Handlingccooiiiiiiiiiiicii e 528
ST 0 Y= 529
13.7. Locking and INAEXESu.cvvniiii it 529
I (o0 7= 10T T 531
14.2. USING EXPLAIL N Looiiiiiiiiii ettt e e e e e e e e e et e s e e e e aeeannnes 531
I T (o Y Y I AV 27 T o 531
14.2.2. EXPLAI N ANALYZEoovviiiiiiieee e e e e e 539
R I O = £ 545

14.2. Statistics Used by the Planner ..., 546
14.2.1. SINgle-Column StaiStiCS . .ovuueiiiieiii e 546
14.2.2. EXtended SEAiSHCS ...ovvvveieiiiiiieeeeiie et 548

14.3. Controlling the Planner with Explicit JO N ClaUSEScccvvevvviiiiiieeiieccieeeiees 552
14.4. Populating @ Databaseoevvuieiiieiie e 554
14.4.1. Disable AULOCOMIMILvuuiiiiii e et e e e eannns 554
14.4.2. USE COPY oitiiiiiieeiieeett et e e e ettt st e e e e e e e et s s e e e e e e e aa e s e e eaaeeeennes 554
14.4.3. REMOVE INAEXES ...cevvvieeeiii ettt 554
14.4.4. Remove Foreign Key CONSITaiNtScccvuveiinieeiiieiiiieeiieeineeeieeeaneeeens 555
14.4.5. Increase mai Nt enance_WOr K _IMBM....c..ccieeiiiieiiiii e, 555
14.4.6. Increase MaX_Wal _Si Z€ ..oiiviiiiiii 555
14.4.7. Disable WAL Archival and Streaming Replicationc.coccovveinnnn. 555
14.4.8. RuN ANALYZE AFtErWardScovvvuuuiiiieeeeeeeeiiiiienseeeeeeeesiiin e e eeeeannns 555
14.4.9. Some Notes about Pg UMDvuiiiniiieei e e e e 556

14.5. NON-DUrable SEtlNGSvuvveiiiiieii e e e e e e e e aaa s 556
ST = T = O = oSO 558
15.1. How Parallel QUENY WOTKSuiiiiiiiii i 558
15.2. When Can Parallel Query Be USed?covvviiiiiiieiiiiiiiiee e e e 559
15.3. Parallel PLanScocoueiiiii e 560
15.3.1. Parallel SCaNScccvueiiiiieeeeeieeee et e e e 560
15.3.2. Parallel JOINScvvviiiieieeiiieiiis et 560
15.3.3. Parallel AQQregationocvuueiiiiiiiiie e 561
15.3.4. Parallel APPENdccovniiiiiiie e 561
15.3.5. Parallel Plan TIPS ..uccuuiiiiiieiii e e e 561

15.4. Parallel SafElYoiieeiieeeiiiie e e 562
15.4.1. Parallel Labeling for Functions and Aggregatescocvvvvevvvieiiiiieeinennnnn. 562

32

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how SQL commands are applied to define and modify data.

We aso advise users who are already familiar with SQL to read this chapter carefully because it
contains several rules and concepts that are implemented inconsistently among SQL databases or that
are specific to PostgreSQL.

4.1. Lexical Structure

4.1.1.

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,
terminated by asemicolon (“;”). Theend of theinput stream al so terminates acommand. Which tokens
are valid depends on the syntax of the particular command.

A token can beakey word, anidentifier, aquoted identifier, aliteral (or constant), or aspecial character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there
isno ambiguity (which is generally only the case if aspecia character is adjacent to some other token

type).

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
| NSERT | NTO MY_TABLE VALUES (3, 'hi there');

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on aline, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent
to whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are
operands or parameters. Thefirst few tokensare generally the command name, so in the above example
wewould usually speak of a“ SELECT”, an“UPDATE”, andan“INSERT” command. But for instance
the UPDATE command always requires a SET token to appear in a certain position, and this particul ar
variation of | NSERT also requires a VALUES in order to be complete. The precise syntax rules for
each command are described in Part V1.

Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words,
that is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are
examples of identifiers. They identify names of tables, columns, or other database objects, depending
on the command they are used in. Therefore they are sometimes simply called “names’. Key words
and identifiers have the same lexical structure, meaning that one cannot know whether a token is an
identifier or a key word without knowing the language. A complete list of key words can be found
in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks
and non-L atin letters) or an underscore (_). Subsequent charactersin an identifier or key word can be
letters, underscores, digits(0-9), or dollar signs($). Notethat dollar signsarenot allowed inidentifiers
according to the letter of the SQL standard, so their use might render applications less portable. The
SQL standard will not define a key word that contains digits or starts or ends with an underscore, so
identifiers of this form are safe against possible conflict with future extensions of the standard.

33

SQL Syntax

The system uses no more than NAMEDATAL EN-1 bytes of an identifier; longer names can be written
in commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier
lengthis63 bytes. If thislimitisproblematic, it can beraised by changing the NAMEDATAL EN constant
insrc/include/ pg _config_nmanual . h.

Key words and unquoted identifiers are case-insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;
can equivalently be written as:
uPDaTE ny_TabLE SeT a = 5;

A convention often used is to write key wordsin upper case and names in lower case, e.g..

UPDATE ny_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by
enclosing an arbitrary sequence of characters in double-quotes ("). A delimited identifier is aways
an identifier, never akey word. So " sel ect " could be used to refer to a column or table named
“select”, whereas an unquoted sel ect would be taken as a key word and would therefore provoke
aparse error when used where a table or column name is expected. The example can be written with
quoted identifierslike this:

UPDATE "ny_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include adouble
guote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

Quoting anidentifier al so makesit case-sensitive, whereas unquoted names are alwaysfolded to lower
case. For example, theidentifiers FOO, f 0o, and" f 00" are considered the same by PostgreSQL, but
"Foo" and" FOO' aredifferent from these three and each other. (The folding of unquoted namesto
lower case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names
should be folded to upper case. Thus, f 0o should be equivalent to " FOO' not " f 00" according to
the standard. If you want to write portable applications you are advised to always quote a particular
name or never quoteit.)

A variant of quoted identifiers allows including escaped Unicode characters identified by their code
points. Thisvariant startswith U& (upper or lower case U followed by ampersand) immediately before
the opening double quote, without any spaces in between, for example U&" f 00" . (Note that this
creates an ambiguity with the operator & Use spaces around the operator to avoid this problem.) Inside
the quotes, Unicode characters can be specified in escaped form by writing a backslash followed by
the four-digit hexadecimal code point number or aternatively a backslash followed by a plus sign
followed by a six-digit hexadecimal code point number. For example, the identifier " dat a" could
be written as

U&" d\ 0061t \ +000061"

The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&"\ 0441\ 043B\ 043E\ 043D"

If adifferent escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

SQL Syntax

U&'d! 0061t ! +000061" UESCAPE '!'

The escape character can be any single character other than ahexadecimal digit, the plussign, asingle
guote, a double quote, or a whitespace character. Note that the escape character is written in single
guotes, not double quotes, after UESCAPE.

To include the escape character in the identifier literaly, writeit twice.

Either the 4-digit or the 6-digit escape form can be used to specify UTF-16 surrogate pairs to
compose characters with code points|larger than U+FFFF, although the availability of the 6-digit form
technically makes this unnecessary. (Surrogate pairs are not stored directly, but are combined into a
single code point.)

If the server encoding isnot UTF-8, the Unicode code point identified by one of these escape sequences
is converted to the actual server encoding; an error isreported if that's not possible.

4.1.2. Constants

There are three kinds of implicitly-typed constants in PostgreSQL: strings, bit strings, and numbers.
Constants can & so be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (*), for
example' This is a string'.Toinclude asingle-quote character within a string constant,
write two adjacent single quotes, e.g., ' Di anne' ' s hor se' . Note that thisis not the same as a
double-quote character (").

Two string constants that are only separated by whitespace with at |east one newline are concatenated
and effectively treated as if the string had been written as one constant. For example:

SELECT ' f o0

"bar';

is equivalent to:

SELECT ' f oobar' ;

but:

SELECT ' f o0’ "bar';

is not valid syntax. (This dlightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

4.1.2.2. String Constants with C-Style Escapes

PostgreSQL also accepts “escape” string constants, which are an extension to the SQL standard.
An escape string constant is specified by writing the letter E (upper or lower case) just before the
opening single quote, e.g., E' f 0o’ . (When continuing an escape string constant across lines, write
E only before the first opening quote.) Within an escape string, a backslash character (\) begins a
C-like backslash escape sequence, in which the combination of backslash and following character(s)
represent a special byte value, as shown in Table 4.1.

35

SQL Syntax

Table 4.1. Backslash Escape Sequences

Backslash Escape Sequence I nter pretation

\b backspace

\ f form feed

\n newline

\r carriage return

\ t tab

\ 0,\ 00,\ 000 (0 =0-7) octal byte value

\ xh,\ xhh (h =0-9, A—F) hexadecimal byte value

\ uxxxx, \ UXxxxxxxx (x = 0-9, A-F) 16 or 32-bit hexadecimal Unicode character
value

Any other character following a backslash is taken literally. Thus, to include a backslash character,
write two backslashes (\ \). Also, a single quote can be included in an escape string by writing\ ',
in addition to the normal way of ' ' .

It is your responsibility that the byte sequences you create, especially when using the octal or
hexadecimal escapes, compose valid characters in the server character set encoding. A useful
aternative is to use Unicode escapes or the aternative Unicode escape syntax, explained in
Section 4.1.2.3; then the server will check that the character conversion is possible.

Caution

If the configuration parameter standard conforming_strings is of f, then PostgreSQL
recognizes backslash escapes in both regular and escape string constants. However, as of
PostgreSQL 9.1, the default is on, meaning that backslash escapes are recognized only
in escape string constants. This behavior is more standards-compliant, but might break
applications which rely on the historical behavior, where backslash escapes were always
recognized. As a workaround, you can set this parameter to of f, but it is better to migrate
away from using backslash escapes. If you need to use abackslash escapeto represent aspecial
character, write the string constant with an E.

In addition to standard_conform ng_strings, the configuration parameters
escape_string_ warning and backslash_quote govern treatment of backslashes in string
constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary
Unicode characters by code point. A Unicode escape string constant starts with U& (upper or lower
case letter U followed by ampersand) immediately before the opening quote, without any spaces in
between, for example U&' f 00" . (Note that this creates an ambiguity with the operator & Use spaces
around the operator to avoid this problem.) Inside the quotes, Unicode characters can be specified
in escaped form by writing a backslash followed by the four-digit hexadecimal code point number
or alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal code point
number. For example, the string ' dat a' could be written as

U&' d\ 0061t \ +000061"

The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

36

SQL Syntax

U& \ 0441\ 043B\ 043E\ 043D

If adifferent escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&' d! 0061t ! +000061" UESCAPE ' !

The escape character can be any single character other than a hexadecimal digit, the plussign, asingle
guote, a double quote, or a whitespace character.

To include the escape character in the string literally, writeit twice.

Either the 4-digit or the 6-digit escape form can be used to specify UTF-16 surrogate pairs to
compose characters with code points|arger than U+FFFF, athough the avail ability of the 6-digit form
technically makes this unnecessary. (Surrogate pairs are not stored directly, but are combined into a
single code point.)

If the server encoding isnot UTF-8, the Unicode code point identified by one of these escape sequences
is converted to the actual server encoding; an error isreported if that's not possible.

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard_conforming_stringsisturned on. Thisis because otherwise this syntax could confuse clients
that parse the SQL statements to the point that it could lead to SQL injections and similar security
issues. If the parameter is set to off, this syntax will be rejected with an error message.

4.1.2.4. Dollar-Quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes, since each of those must be doubled.
To allow more readable queries in such situations, PostgreSQL provides another way, called “dollar
quoting”, to write string constants. A dollar-quoted string constant consists of a dollar sign ($), an
optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence of characters that
makes up the string content, adollar sign, the same tag that began this dollar quote, and adollar sign.
For example, here are two different ways to specify the string “ Dianne's horse” using dollar quoting:

$$Di anne' s horse$$
$SonmeTag$Di anne' s hor se$SoneTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no charactersinside adollar-quoted string are ever escaped: the string content isalwayswritten
literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level.
Thisis most commonly used in writing function definitions. For example:

$f uncti on$
BEG N
RETURN ($1 ~ g[\t\r\n\v\\]q);
END;
$f uncti on$

Here, the sequence q[\ t\ r\ n\ vi \] g represents a dollar-quoted literal string [\ t\r\n\v
\'\], which will be recognized when the function body is executed by PostgreSQL. But since the
sequence does not match the outer dollar quoting delimiter $f unct i on$, it is just some more
characters within the constant so far as the outer string is concerned.

37

SQL Syntax

Thetag, if any, of adollar-quoted string follows the same rules as an unquoted identifier, except that it
cannot contain adollar sign. Tagsare case sensitive, so $t ag$St ri ng cont ent $t ag$ iscorrect,
but STAGESt ri ng cont ent $t ag$ isnot.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write
complicated string literals than the standard-compliant single quote syntax. It is particularly useful
when representing string constants inside other constants, as is often needed in procedural function
definitions. With single-quote syntax, each backslash in the above example would have to be written
asfour backs ashes, which would be reduced to two backslashesin parsing the original string constant,
and then to one when the inner string constant is re-parsed during function execution.

4.1.2.5. Bit-String Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately
before the opening quote (no intervening whitespace), e.g., B' 1001" . The only characters allowed
within bit-string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading X (upper
or lower case), e.qg., X' 1FF' . Thisnotationisequivalent to abit-string constant with four binary digits
for each hexadecimal digit.

Both forms of hit-string constant can be continued across lines in the same way as regular string
constants. Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants

Numeric constants are accepted in these general forms:

digits
digits.[digits][e[+-]digits]
[digits].digits[e[+-]digits]
digitse[+-]digits

where di gi t s is one or more decimal digits (O through 9). At least one digit must be before or
after the decimal point, if one is used. At least one digit must follow the exponent marker (e), if
one is present. There cannot be any spaces or other characters embedded in the constant, except for
underscores, which can be used for visual grouping as described below. Note that any leading plus or
minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

42

35

4.

.001

5e2
1.925e-3

Additionally, non-decimal integer constants are accepted in these forms:
Oxhexdigits

Oooctdigits
Obbindigits

38

SQL Syntax

where hexdi gi t s isone or more hexadecimal digits (0-9, A-F), oct di gi t s isone or more octal
digits (0-7), and bi ndi gi t s isone or more binary digits (0 or 1). Hexadecimal digits and the radix
prefixes can be in upper or lower case. Note that only integers can have non-decimal forms, not
numbers with fractional parts.

These are some examples of valid non-decimal integer constants:

0b100101
0B10011001
00273
00755
Ox42f
OXFFFF

For visual grouping, underscores can be inserted between digits. These have no further effect on the
value of the constant. For example:

1_500_000_000
0b10001000_00000000
0o_1 755
OXFFFF_FFFF

1.618 034

Underscores are not allowed at the start or end of a humeric constant or a group of digits (that is,
immediately before or after the decimal point or the exponent marker), and more than one underscore
inarow is not allowed.

A numeric constant that contains neither a decimal point nor an exponent isinitially presumed to be
typei nt eger if itsvaluefitsintypei nt eger (32 bits); otherwiseitispresumedto betypebi gi nt
if its value fitsin type bi gi nt (64 bits); otherwise it is taken to be type nuner i c¢. Constants that
contain decimal points and/or exponents are always initially presumed to be type nuner i c.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type
depending on context. When necessary, you can force a numeric value to be interpreted as a specific
data type by casting it. For example, you can force a numeric value to be treated as type r eal
(f 1 oat 4) by writing:

REAL '1.23" -- string style
1.23:: REAL -- PostgreSQ (historical) style

These are actually just specia cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type 'string'
"string' ::type
CAST ('string' AS type)

The string constant'stext is passed to the input conversion routine for thetypecalledt ype. Theresult
isaconstant of the indicated type. The explicit type cast can be omitted if there is no ambiguity asto
the type the constant must be (for example, when it is assigned directly to atable column), in which
caseit isautomatically coerced.

39

SQL Syntax

4.1.3.

4.1.4.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify atype coercion using a function-like syntax:

typenane ('string')
but not al type names can be used in this way; see Section 4.2.9 for details.

The: :, CAST(), and function-call syntaxes can also be used to specify run-time type conversions
of arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the t ype
"string' syntax canonly beusedto specify thetype of asimpleliteral constant. Another restriction
onthet ype ' string' syntaxisthatit doesnotwork for array types; use: : or CAST() to specify
the type of an array constant.

The CAST() syntax conformsto SQL. Thetype 'string' syntax is a generalization of the
standard: SQL specifies this syntax only for afew data types, but PostgreSQL allowsit for all types.
The syntax with : : ishistorical PostgreSQL usage, asis the function-call syntax.

Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the
following list:

+-F<>=~1 @#% & | ?
There are afew restrictions on operator names, however:

e -- and/* cannot appear anywhere in an operator name, since they will be taken as the start of
acomment.

» A multiple-character operator name cannot end in + or -, unless the name also contains at |east
one of these characters:

~1@#%N& | ?

For example, @ isan alowed operator name, but * - is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL -standard operator names, you will usualy need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a prefix operator named
@ you cannot write X* @Y; you must write X* @Y to ensure that PostgreSQL reads it as two operator
names not one.

Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an
operator. Details on the usage can be found at the location where the respective syntax element
is described. This section only exists to advise the existence and summarize the purposes of these
characters.

* A dollar sign ($) followed by digits is used to represent a positional parameter in the body of
a function definition or a prepared statement. In other contexts the dollar sign can be part of an
identifier or a dollar-quoted string constant.

» Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

40

SQL Syntax

4.1.5.

4.1.6.

e Brackets ([]) are used to select the elements of an array. See Section 8.15 for more information
on arrays.

» Commas (,) are used in some syntactical constructs to separate the elements of alist.

» The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

» Thecolon (:) isused to select “slices” from arrays. (See Section 8.15.) In certain SQL dialects
(such as Embedded SQL), the colon is used to prefix variable names.

» Theasterisk (*) isused in some contexts to denote all the fields of atable row or composite value.
It also has a special meaning when used as the argument of an aggregate function, namely that the
aggregate does not require any explicit parameter.

e Theperiod (.) isused in numeric constants, and to separate schema, table, and column names.

Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of
theling, e.g.:

-- This is a standard SQ. conment

Alternatively, C-style block comments can be used:

/* multiline coment
* with nesting: /* nested block coment */
*/

where the comment begins with / * and extends to the matching occurrence of */ . These block
comments nest, as specified in the SQL standard but unlike C, so that one can comment out larger
blocks of code that might contain existing block comments.

A comment isremoved from theinput stream beforefurther syntax analysisand is effectively replaced
by whitespace.

Operator Precedence

Table 4.2 showsthe precedence and associativity of the operatorsin PostgreSQL . Most operators have
the same precedence and arel eft-associative. The precedence and associativity of the operatorsishard-
wired into the parser. Add parentheses if you want an expression with multiple operators to be parsed
in some other way than what the precedence rulesimply.

Table 4.2. Operator Precedence (highest to lowest)

Operator/Element Associativity Description

| eft table/column name separator
e left PostgreSQL -style typecast
[] left array element selection
+ - right unary plus, unary minus
COLLATE left collation selection
AT left AT TI ME ZONE, AT LOCAL
n left exponentiation

41

SQL Syntax

Operator/Element Associativity Description

*| % left multiplication, division, modulo

+ - left addition, subtraction

(any other operator) left al other native and user-defined
operators

BETWEENI NLI KE I LI KE range containment, set membership,

SI'M LAR string matching

<>=<=>=<> comparison operators

| ST SNULL NOTNULL I'S TRUE,I' S FALSE, I S NULL,
I'S DI STI NCT FROM etc.

NOT right logical negation

AND left logical conjunction

OR left logical disjunction

Note that the operator precedence rules a so apply to user-defined operators that have the same names
asthe built-in operators mentioned above. For example, if you definea” +" operator for some custom
datatypeit will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for examplein:

SELECT 3 OPERATOR(pg_catal og. +) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4.2 for “any other
operator”. Thisistrue no matter which specific operator appears inside OPERATOR() .

Note

PostgreSQL versionsbefore 9.5 used dightly different operator precedencerules. In particular,
<= >= and <> used to be treated as generic operators; | S tests used to have higher priority;
and NOT BETWEEN and related constructs acted inconsistently, being taken in some cases
as having the precedence of NOT rather than BETVEEN. These rules were changed for better
compliance with the SQL standard and to reduce confusion from inconsistent treatment of
logically equivalent constructs. In most cases, these changes will result in no behavioral
change, or perhapsin“no such operator” failureswhich can beresolved by adding parentheses.
However there are corner cases in which a query might change behavior without any parsing
error being reported.

4.2. Value Expressions

Value expressions are used in avariety of contexts, such asin thetarget list of the SELECT command,
asnew column valuesin| NSERT or UPDATE, or in search conditionsin anumber of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of atable
expression (which isatable). Value expressions are therefore also called scalar expressions (or even
simply expressions). The expression syntax allowsthe cal cul ation of valuesfrom primitive partsusing
arithmetic, logical, set, and other operations.

A value expression is one of the following:
+ A constant or literal value

» A column reference

42

SQL Syntax

4.2.1.

4.2.2.

A positional parameter reference, in the body of afunction definition or prepared statement

A subscripted expression

» A field selection expression
* An operator invocation

» A function call

* An aggregate expression

* A window function call

* A typecast

* A collation expression

» A scalar subquery

* An array constructor

* A row constructor

» Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of afunction or operator and
are explained in the appropriate location in Chapter 9. An exampleisthel S NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

Column References

A column can be referenced in the form:

correl ati on. col utmnane

corr el at i on isthe name of atable (possibly qualified with a schemaname), or an aliasfor atable
defined by means of a FROMclause. The correlation name and separating dot can be omitted if the
column name is unique across all the tables being used in the current query. (See also Chapter 7.)

Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL
statement. Parameters are used in SQL function definitions and in prepared queries. Some client
libraries also support specifying data values separately from the SQL command string, in which case
parameters are used to refer to the out-of-line data values. The form of a parameter referenceis:

$nunber
For example, consider the definition of afunction, dept , as:
CREATE FUNCTI ON dept (text) RETURNS dept

AS $$ SELECT * FROM dept WHERE nanme = $1 $$
LANGUAGE SQL;

43

SQL Syntax

4.2.3.

4.2.4.

Here the $1 references the value of the first function argument whenever the function is invoked.

Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be
extracted by writing

expressi on[subscript]

or multiple adjacent elements (an “array slice”) can be extracted by writing

expression[| ower _subscri pt: upper_subscri pt]

(Here, thebrackets[] aremeant to appear literally.) Eachsubscr i pt isitself an expression, which
will be rounded to the nearest integer value.

In general the array expr essi on must be parenthesized, but the parentheses can be omitted when
the expression to be subscripted is just a column reference or positional parameter. Also, multiple
subscripts can be concatenated when the original array is multidimensional. For example:

nyt abl e. arraycol um| 4]

nyt abl e. two_d_col umm[17] [34]
$1[10: 42]

(arrayfunction(a, b))[42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can
be extracted by writing

expression. fiel dname

In general therow expr essi on must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

nyt abl e. mycol um
$1. somecol um
(rowfunction(a,b)).col3

(Thus, a qualified column reference is actually just a specia case of the field selection syntax.) An
important specia case is extracting afield from atable column that is of a composite type:

(compositecol).sonefield
(myt abl e. conmposi tecol). sonefield

The parentheses are required here to show that conposi t ecol isacolumn name not atable name,
or that myt abl e isatable name not a schemaname in the second case.

You can ask for al fields of acomposite value by writing . *:

SQL Syntax

4.2.5.

4.2.6.

4.2.7.

(compositecol).*

This notation behaves differently depending on context; see Section 8.16.5 for details.

Operator Invocations

There are two possible syntaxes for an operator invocation:

expr essi on oper at or expr essi on (binary infix operator)
oper at or expr essi on (unary prefix operator)

wheretheoper at or token followsthe syntax rules of Section 4.1.3, or isone of the key words AND,
OR, and NOT, or isaqualified operator name in the form:
OPERATOR(schemm. oper at or nane)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name),
followed by its argument list enclosed in parentheses:

function_name ([expression [, expression ... 1])

For example, the following computes the square root of 2:

sqrt(2)
Thelist of built-in functionsisin Chapter 9. Other functions can be added by the user.

When issuing queriesin adatabase where some users mistrust other users, observe security precautions
from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

Note

A function that takes a single argument of composite type can optionally be called using
field-selection syntax, and conversely field selection can be written in functional style. That
is, the notations col (t abl e) andt abl e. col areinterchangeable. This behavior is not
SQL-standard but is provided in PostgreSQL because it alows use of functions to emulate
“computed fields’. For more information see Section 8.16.5.

Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected
by aquery. An aggregate function reduces multiple inputsto a single output value, such asthe sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate _nane (expression [, ...] [order_by clause]) [FILTER
(WHERE filter _clause)]

45

SQL Syntax

aggregate_nane (ALL expression [, ...] [order_by clause])
[FILTER (WHERE filter_cl ause)]
aggregate_nane (DI STINCT expression [, ...] [order_by clause])

[FILTER (WHERE filter_cl ause)]
aggregate nane (*) [FILTER (WHERE filter_clause)]
aggregate_nane ([expression [, ...]]) WTHN GROUP
(order_by clause) [FILTER (WHERE filter_clause)]

whereaggr egat e_nane isapreviously defined aggregate (possibly qualified with a schemaname)
and expr essi on is any value expression that does not itself contain an aggregate expression or
a window function call. The optional order _by cl ause andfilter cl ause are described
below.

The first form of aggregate expression invokes the aggregate once for each input row. The second
form is the same as the first, since ALL is the default. The third form invokes the aggregate once for
each distinct value of the expression (or distinct set of values, for multiple expressions) found in the
input rows. The fourth form invokes the aggregate once for each input row; since no particular input
valueis specified, it is generally only useful for the count (*) aggregate function. The last formis
used with ordered-set aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s)
yield null are discarded. This can be assumed to be true, unless otherwise specified, for al built-in

aggregates.

For example, count (*) yields the total number of input rows; count (f 1) yields the number of
input rowsinwhichf 1 isnon-null, sincecount ignoresnulls; andcount (di sti nct f1) yields
the number of distinct non-null values of f 1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases
this does not matter; for example, m n produces the same result no matter what order it receives the
inputs in. However, some aggregate functions (such as ar ray_agg and st ri ng_agg) produce
results that depend on the ordering of the input rows. When using such an aggregate, the optional
order _by_cl ause can be used to specify the desired ordering. The or der _by_cl ause has
the same syntax as for a query-level ORDER BY clause, as described in Section 7.5, except that its
expressions are alwaysjust expressions and cannot be output-column names or numbers. For example:

WTH vals (v) AS (VALUES (1),(3),(4),(3),(2))
SELECT array_agg(v ORDER BY v DESC) FROM val s;
array_agg

{4,3,3,2,1}

Sincej sonb only keeps the last matching key, ordering of its keys can be significant:

WTH vals (k, v) AS (VALUES ('keyO','1"), ('keyl', 6 '3"),
("keyl',"2"))
SELECT j sonb_obj ect _agg(k, v ORDER BY v) FROM val s;
j sonb_obj ect _agg

{"key0Q": "1", "keyl": "3"}
When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after
all the aggregate arguments. For example, write this:
SELECT string_agg(a, ',' ORDER BY a) FROMtabl e;

not this:

46

SQL Syntax

SELECT string_agg(a ORDER BY a, ',') FROMtable; -- incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with
two ORDER BY keys (the second one being rather useless since it's a constant).

If DI STI NCT isspecifiedwithanor der _by cl ause, ORDER BY expressions can only reference
columnsinthe DI STI NCT list. For example:

W TH vals (v) AS (VALUES (1), (3),(4),(3),(2))
SELECT array_agg(DI STINCT v ORDER BY v DESC) FROM val s;
array_agg

{4,3,2,1}

Placing ORDER BY within the aggregate's regular argument list, as described so far, is used
when ordering the input rows for general-purpose and statistical aggregates, for which ordering is
optional. There is a subclass of aggregate functions called ordered-set aggregates for which an
order _by_ cl ause isrequired, usualy because the aggregate's computation is only sensible in
terms of a specific ordering of itsinput rows. Typical examples of ordered-set aggregatesinclude rank
and percentile calculations. For an ordered-set aggregate, the or der _by_cl ause iswritteninside
WTH N GROUP (...), asshown in the final syntax aternative above. The expressions in the
order _by_cl ause are evaluated once per input row just like regular aggregate arguments, sorted
aspertheor der _by_cl ause'srequirements, and fed to the aggregate function asinput arguments.
(Thisis unlike the case for anon-W THI N GROUP or der _by_cl ause, which is not treated as
argument(s) to the aggregate function.) The argument expressions preceding W THI N GROUP, if
any, are caled direct arguments to distinguish them from the aggregated arguments listed in the
order _by_cl ause. Unlikeregular aggregate arguments, direct arguments are evaluated only once
per aggregate call, not once per input row. This means that they can contain variables only if those
variables are grouped by GROUP BY; this restriction is the same as if the direct arguments were not
inside an aggregate expression at all. Direct arguments are typically used for things like percentile
fractions, which only make sense as a single value per aggregation calculation. The direct argument
list can be empty; in thiscase, writejust () not (*) . (PostgreSQL will actually accept either spelling,
but only the first way conforms to the SQL standard.)

An example of an ordered-set aggregate call is:

SELECT percentile_cont(0.5) WTH N GROUP (ORDER BY incone) FROM
househol ds;
percentil e_cont

which obtainsthe 50th percentile, or median, value of thei ncome column fromtablehousehol ds.
Here, 0. 5 isadirect argument; it would make no sensefor the percentilefraction to beavauevarying
across rows.

If FI LTER s specified, then only the input rows for which thefi | t er _cl ause evaluatesto true
are fed to the aggregate function; other rows are discarded. For example:

SELECT

count (*) AS unfiltered,

count (*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
unfiltered | filtered

47

SQL Syntax

4.2.8.

(1 row

The predefined aggregate functions are described in Section 9.21. Other aggregate functions can be
added by the user.

An aggregate expression can only appear in the result list or HAVI NGclause of a SELECT command.
It is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before
the results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.24),
the aggregate is normally evaluated over the rows of the subquery. But an exception occurs if
the aggregate's arguments (and fi | t er _cl ause if any) contain only outer-level variables: the
aggregate then belongs to the nearest such outer level, and is evaluated over the rows of that query.
The aggregate expression as awhole isthen an outer reference for the subquery it appearsin, and acts
as a constant over any one evaluation of that subquery. The restriction about appearing only in the
result list or HAVI NG clause applies with respect to the query level that the aggregate belongs to.

Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike non-window aggregate calls, thisis not tied to grouping of the
selected rows into a single output row — each row remains separate in the query output. However the
window function has access to all the rows that would be part of the current row's group according
to the grouping specification (PARTI TI ON BY list) of the window function call. The syntax of a
window function call is one of the following:

function_nane ([expression [, expression ...]]) [FILTER
(WHERE filter_clause)] OVER wi ndow_nane
function_nane ([expression [, expression ...]]) [FILTER

(WHERE filter_clause)] OVER (wi ndow definition)
function_nane (*) [FILTER (WHERE filter_cl ause)]
OVER wi ndow_nane
function_nane (*) [FILTER (WHERE filter_clause)] OVER
(wi ndow definition)

wherewi ndow_def i ni t i on hasthe syntax

[existing_w ndow _nane]

[PARTITION BY expression [, ...]]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS
{ FIRST | LAST} 1 [, ...]1 1

[frane_cl ause]

The optiona f r ane_cl ause can be one of

{ RANGCE | RON5 | GROUPS } frane_start [frame_exclusion]
{ RANGE | ROA5 | GROUPS } BETWEEN frane_start AND frane_end
[frame_excl usion]

whereframe_start andfr ame_end can be one of

UNBOUNDED PRECEDI NG
of f set PRECEDI NG
CURRENT ROW

of fset FOLLOW NG

48

SQL Syntax

UNBOUNDED FOLLOW NG

andf r ame_excl usi on can be one of

EXCLUDE CURRENT ROW
EXCLUDE GROUP
EXCLUDE TI ES
EXCLUDE NO OTHERS

Here, expr essi on represents any value expression that does not itself contain window function
cals.

wi ndow_nare isareferenceto anamed window specification defined in the query's W NDOWcl ause.
Alternatively, afull Wi ndow_def i ni ti on can be given within parentheses, using the same syntax
asfor defining anamed window in the W NDOWCclause; seethe SEL ECT reference pagefor details. It's
worth pointing out that OVER wnarre is not exactly equivalent to OVER (wnane .. .);thelatter
implies copying and modifying the window definition, and will be rejected if the referenced window
specification includes a frame clause.

The PARTI TI ON BY clause groups the rows of the query into partitions, which are processed
separately by the window function. PARTI TI ON BY works similarly to a query-level GROUP BY
clause, except that its expressions are aways just expressions and cannot be output-column names or
numbers. Without PARTI TI ON BY, al rows produced by the query are treated as a single partition.
The ORDER BY clause determines the order in which the rows of a partition are processed by the
window function. It works similarly to a query-level ORDER BY clause, but likewise cannot use
output-column names or numbers. Without ORDER BY, rows are processed in an unspecified order.

Thefrane_cl ause specifies the set of rows constituting the window frame, which is a subset of
the current partition, for those window functions that act on the frame instead of the whole partition.
The set of rows in the frame can vary depending on which row is the current row. The frame can be
specified in RANGE, ROWS or GROUPS mode; in each casg, it runs from thef rane_st art to the
frame_end. If f rame_end isomitted, the end defaultsto CURRENT ROW

A frame_start of UNBOUNDED PRECEDI NG means that the frame starts with the first row of
the partition, and similarly af r ame_end of UNBOUNDED FOLLOW NG means that the frame ends
with the last row of the partition.

In RANGE or GROUPS mode, af ranme_st art of CURRENT ROWmeans the frame starts with the
current row's first peer row (a row that the window's ORDER BY clause sorts as equivaent to the
current row), whileaf r ame_end of CURRENT ROWmMmeans the frame ends with the current row's
last peer row. In ROAS mode, CURRENT ROWsimply means the current row.

In the of f set PRECEDI NG and of f set FOLLOW NG frame options, the of f set must be an
expression not containing any variables, aggregate functions, or window functions. The meaning of
the of f set depends on the frame mode:

* In ROAS mode, the of f set must yield anon-null, non-negative integer, and the option means that
the frame starts or ends the specified number of rows before or after the current row.

» In GROUPS mode, the of f set again must yield a non-null, non-negative integer, and the option
means that the frame starts or ends the specified number of peer groups before or after the current
row's peer group, where a peer group isaset of rowsthat are equivalent inthe ORDER BY ordering.
(There must be an ORDER BY clause in the window definition to use GROUPS mode.)

 In RANGE mode, these options require that the ORDER BY clause specify exactly one column. The
of f set specifiesthe maximum difference between the value of that column in the current row and
itsvaluein preceding or following rowsof theframe. The datatypeof theof f set expressionvaries
depending on the data type of the ordering column. For numeric ordering columns it is typically
of the same type as the ordering column, but for datetime ordering columnsitisani nt erval .

49

SQL Syntax

4.2.9.

For example, if the ordering column is of type dat e or ti nest anp, one could write RANGE
BETVEEN '1 day' PRECEDI NG AND '10 days' FOLLOW NG Theof fset isdtill
required to be non-null and non-negative, though the meaning of “non-negative’ depends on its
data type.

In any case, the distance to the end of the frame is limited by the distance to the end of the partition,
so that for rows near the partition ends the frame might contain fewer rows than elsewhere.

Notice that in both ROAE and GROUPS mode, 0 PRECEDI NGand 0 FOLLOW NGare equivaent to
CURRENT ROW This normally holds in RANGE mode as well, for an appropriate data-type-specific
meaning of “zero”.

Thef r ane_excl usi on option allows rows around the current row to be excluded from the frame,
even if they would be included according to the frame start and frame end options. EXCLUDE
CURRENT ROWexcludes the current row from the frame. EXCLUDE GROUP excludes the current
row and its ordering peers from the frame. EXCLUDE TI ES excludes any peers of the current row
from the frame, but not the current row itself. EXCLUDE NO OTHERS simply specifies explicitly the
default behavior of not excluding the current row or its peers.

The default framing option is RANGE UNBOUNDED PRECEDI NG, which is the same as RANGE
BETVWEEN UNBOUNDED PRECEDI NG AND CURRENT ROW With ORDER BY, this setsthe frame
to be all rows from the partition start up through the current row's last ORDER BY peer. Without
ORDER BY, this means al rows of the partition are included in the window frame, since all rows
become peers of the current row.

Restrictions are that f r ame_st art cannot be UNBOUNDED FOLLOW NG, f r ane_end cannot
be UNBOUNDED PRECEDI NG, and the f r ane_end choice cannot appear earlier in the above list
of frame_start andframe_end options than the f r ame_st art choice does — for example
RANGE BETWEEN CURRENT ROW AND of f set PRECEDI NGisnot allowed. But, for example,
ROAS BETWEEN 7 PRECEDI NG AND 8 PRECEDI NGis allowed, even though it would never
select any rows.

If FI LTER s specified, then only the input rows for whichthefi | t er _cl ause evauatesto true
are fed to the window function; other rows are discarded. Only window functions that are aggregates
accept aFl LTER clause.

The built-in window functions are described in Table 9.67. Other window functions can be added by
the user. Also, any built-in or user-defined general-purpose or statistical aggregate can be used as a
window function. (Ordered-set and hypothetical-set aggregates cannot presently be used as window
functions.)

Thesyntaxesusing * are used for calling parameter-1ess aggregate functions as window functions, for
examplecount (*) OVER (PARTI TI ON BY x ORDER BY Yy) . Theasterisk (*) iscustomarily
not used for window-specific functions. Window-specific functions do not allow DI STI NCT or
ORDER BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

Moreinformation about window functions can befound in Section 3.5, Section 9.22, and Section 7.2.5.

Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression: :type

The CAST syntax conforms to SQL ; the syntax with : : ishistorical PostgreSQL usage.

50

SQL Syntax

When acast is applied to avalue expression of aknown type, it represents arun-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this
is subtly different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied
to an unadorned string literal represents the initial assignment of a type to a literal constant value,
and so it will succeed for any type (if the contents of the string literal are acceptable input syntax for
the data type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value
expression must produce (for example, when it is assigned to a table column); the system will
automatically apply atype cast in such cases. However, automatic casting is only done for casts that
aremarked “ OK to apply implicitly” in the system catalogs. Other casts must be invoked with explicit
casting syntax. This restriction is intended to prevent surprising conversions from being applied
silently.

Itis also possible to specify atype cast using a function-like syntax:

typenane (expression)

However, this only works for types whose names are also valid as function names. For example,
doubl e precision cannot be used this way, but the equivalent f| oat 8 can. Also, the
namesi nterval, tinme, andti nest anp can only be used in this fashion if they are double-
quoted, because of syntactic conflicts. Therefore, the use of the function-like cast syntax leads to
inconsistencies and should probably be avoided.

Note

The function-like syntax is in fact just a function call. When one of the two standard cast
syntaxes is used to do a run-time conversion, it will internally invoke a registered function
to perform the conversion. By convention, these conversion functions have the same name as
their output type, and thusthe* function-like syntax” is nothing more than adirect invocation of
the underlying conversion function. Obviously, thisisnot something that aportable application
should rely on. For further details see CREATE CAST.

4.2.10. Collation Expressions

The COLLATE clause overrides the collation of an expression. It is appended to the expression it
appliesto:

expr COLLATE coll ation

wherecol | at i onisapossibly schema-qualified identifier. The COLLATE clause bindstighter than
operators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involvedinthe expression, or it defaultsto the default collation of the databaseif no columnisinvolved
in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause,
for example:
SELECT a, b, ¢ FROMtbhl WHERE ... ORDER BY a COLLATE "C';

and overriding the collation of afunction or operator call that haslocal e-sensitive results, for example:

51

SQL Syntax

SELECT * FROM tbl WHERE a > 'foo' COLLATE "C';

Note that in the latter case the COLLATE clause is attached to an input argument of the operator we
wishto affect. It doesn't matter which argument of the operator or function call the COLLATE clauseis
attached to, because the collation that is applied by the operator or function is derived by considering
all arguments, and an explicit COLLATE clause will override the collations of all other arguments.
(Attaching non-matching COLLATE clauses to more than one argument, however, is an error. For
more details see Section 23.2.) Thus, this gives the same result as the previous example:

SELECT * FROM t bl WHERE a COLLATE "C' > 'foo0';

But thisis an error:

SELECT * FROM tbl WHERE (a > 'foo') COLLATE "C';

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable
datatypebool ean.

4.2.11. Scalar Subqueries

A scalar subquery isan ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and
the single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery. See also Section 9.24 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT nane, (SELECT max(pop) FROM cities WHERE cities.state =
st at es. nane)
FROM st at es;

4.2.12. Array Constructors

Anarray constructor isan expression that buildsan array value using valuesfor itsmember el ements. A
simple array constructor consists of the key word ARRAY, aleft square bracket [, alist of expressions
(separated by commas) for the array element values, and finally aright square bracket | . For example:

SELECT ARRAY[1, 2, 3+4];
array

By default, the array element type is the common type of the member expressions, determined using
the samerulesasfor UNI ONor CASE constructs (see Section 10.5). Y ou can override thisby explicitly
casting the array constructor to the desired type, for example:

SELECT ARRAY[1, 2,22.7]::integer[];
array

52

SQL Syntax

(1 row

This has the same effect as casting each expression to the array element type individually. For more
on casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In theinner constructors, the
key word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1, 2], ARRAY[3,4]];
array

{{1,2},{3,4}}
(1 row

SELECT ARRAY[[1,2],[3,4]1];
array

{{1,2},{3,4}}
(1 row

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce
sub-arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates
automatically to al the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only asub-ARRAY construct. For example:

CREATE TABLE arr(f1 int[], f2 int[]);
I NSERT | NTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]]);

SELECT ARRAY[f1, f2, '{{9,10},{11,12}}'::int[]] FROM arr;
array

{{{1,2},{3,4}}.,{{5,6},{7, 8}, {{9,10},{11,12}}}
(1 row

Y ou can construct an empty array, but since it's impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer[];
array

{}
(1 row

Itisalso possibleto construct an array from the results of asubquery. Inthisform, the array constructor
is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For
example:

SELECT ARRAY(SELECT oi d FROM pg_proc WHERE pronanme LIKE 'bytea%);
array

{2011, 1954, 1948, 1952, 1951, 1244, 1950, 2005, 1949, 1953, 2006, 31, 2412}
(1 row

53

SQL Syntax

SELECT ARRAY(SELECT ARRAY[i, i*2] FROM generate_series(1,5) AS
a(i));

{{1,2},{2,4},{3,6},{4,8},{5, 10}}
(1 row

The subquery must return a single column. If the subquery's output column is of a non-array type,
the resulting one-dimensional array will have an element for each row in the subquery result, with an
element type matching that of the subquery's output column. If the subquery's output column is of an
array type, the result will be an array of the same type but one higher dimension; in this case all the
subquery rows must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARRAY aways begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors

A row constructor isan expression that builds arow value (also called acomposite value) using values
for its member fields. A row constructor consists of the key word ROW a left parenthesis, zero or
more expressions (separated by commas) for the row field values, and finally aright parenthesis. For
example:

SELECT ROWN1,2.5,'this is a test');

The key word ROWis optional when there is more than one expression in the list.

A row constructor can include the syntax r owval ue. *, which will be expanded to a list of the
elements of the row value, just as occurswhen the . * syntax isused at the top level of a SELECT list
(see Section 8.16.5). For example, if tablet hascolumnsf 1 and f 2, these are the same:

SELECT ROW(t.*, 42) FROMt;
SELECT ROWt.f1, t.f2, 42) FROMt;

Note

Before PostgreSQL 8.2, the . * syntax was not expanded in row constructors, so that writing
ROWt.*, 42) created atwo-field row whose first field was another row value. The new
behavior is usualy more useful. If you need the old behavior of nested row values, write the
inner row value without . *, for instance RON(t, 42).

By default, the value created by a ROWexpression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of atable, or acomposite type created with
CREATE TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE nytable(fl int, f2 float, f3 text);

CREATE FUNCTI ON getf1(nytabl e) RETURNS int AS ' SELECT $1.f1'
LANGUAGE SQL;

-- No cast needed since only one getfl() exists
SELECT getf1(ROWN1,2.5,'this is a test'));
getfl

SQL Syntax

1
(1 row

CREATE TYPE nyrowype AS (f1 int, f2 text, f3 nuneric);

CREATE FUNCTI ON get f 1(myr owt ype) RETURNS int AS ' SELECT $1.f1'
LANGUAGE SQL;

-- Now we need a cast to indicate which function to call:
SELECT getf1(RON1,2.5,'this is a test'));
ERROR: function getfl(record) is not unique

SELECT getf1(RON1,2.5,'this is a test')::mytable);
getfl

SELECT getf1(CAST(ROWN11,'this is a test',2.5) AS nyrowtype));
getfl

11
(1 row

Row constructors can be used to build composite valuesto be stored in acomposite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possibleto test rows using
the standard comparison operators as described in Section 9.2, to compare one row against another as
described in Section 9.25, and to use them in connection with subqueries, as discussed in Section 9.24.

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated |eft-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR sonefunc();

then somef unc() would (probably) not be called at all. The same would be the case if one wrote:

SELECT sonefunc() OR true;

Note that thisis not the same as the left-to-right “ short-circuiting” of Boolean operators that is found
in some programming languages.

As aconsequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerousto rely on side effects or eval uation order in WHERE and HAVI NGclauses, since
those clauses are extensively reprocessed as part of devel oping an execution plan. Boolean expressions
(AND/OR/NOT combinations) in those clauses can be reorganized in any manner alowed by the laws
of Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.18) can be used. For
example, thisis an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;

55

SQL Syntax

But thisis safe:

SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE fal se END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done
when necessary. (In this particular example, it would be better to sidestep the problem by writing y
> 1.5*x instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is
that it does not prevent early evaluation of constant subexpressions. As described in Section 36.7,
functions and operators marked | MMUTABLE can be evaluated when the query is planned rather than
when it is executed. Thus for example

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM t ab;

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant
subexpression, evenif every row inthetablehasx > 0 so that the EL SE arm would never be entered
at runtime.

While that particular example might seem silly, related cases that don't obviously involve constants
can occur in queries executed within functions, since the values of function arguments and local
variables can beinserted into queries as constants for planning purposes. Within PL/pgSQL functions,
for example, using an | F-THEN-EL SE statement to protect a risky computation is much safer than
just nesting it in a CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate
expression contained within it, because aggregate expressions are computed before other expressions
in a SELECT list or HAVI NG clause are considered. For example, the following query can cause a
division-by-zero error despite seemingly having protected against it:

SELECT CASE WHEN ni n(enpl oyees) > 0
THEN avg(expenses / enpl oyees)
END
FROM depart nments;

Them n() andavg() aggregates are computed concurrently over all the input rows, so if any row
has enpl oyees equal to zero, the division-by-zero error will occur before there is any opportunity
to test the result of m n() . Instead, use a WHERE or FI LTER clause to prevent problematic input
rows from reaching an aggregate function in the first place.

4.3. Calling Functions

PostgreSQL allowsfunctionsthat have named parametersto be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters,
since it makes the associations between parameters and actual arguments more explicit and reliable.
In positional notation, a function call is written with its argument values in the same order as they
are defined in the function declaration. In named notation, the arguments are matched to the function
parameters by name and can be written in any order. For each notation, also consider the effect of
function argument types, documented in Section 10.3.

In either notation, parameters that have default values given in the function declaration need not be
written in the call at all. But this is particularly useful in named notation, since any combination of
parameters can be omitted; while in positional notation parameters can only be omitted from right
to | eft.

PostgreSQL al so supports mixed notation, which combines positional and named notation. Inthiscase,
positional parameters are written first and named parameters appear after them.

56

SQL Syntax

4.3.1.

4.3.2.

The following examples will illustrate the usage of al three notations, using the following function
definition:

CREATE FUNCTI ON concat | ower _or _upper(a text, b text, uppercase
bool ean DEFAULT fal se)
RETURNS t ext
AS
$$
SELECT CASE
WHEN $3 THEN UPPER($1 || ' ' || $2)
ELSE LONER(S$1 || " " || $2)
END;
$$
LANGUAGE SQL | MMUTABLE STRI CT;

Function concat _| ower _or _upper hastwo mandatory parameters, a and b. Additionally there
is one optional parameter upper case which defaults to f al se. The a and b inputs will be
concatenated, and forced to either upper or lower case depending on the upper case parameter.
The remaining details of this function definition are not important here (see Chapter 36 for more
information).

Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL.
Anexampleis:

SELECT concat _| ower _or_upper('Hello', '"Wrld', true);
concat _| ower _or _upper

HELLO WORLD
(1 row

All argumentsare specified in order. Theresult isupper casesinceupper case isspecifiedast r ue.
Another exampleis:

SELECT concat _| ower _or_upper (' Hello', 'Wrld');
concat _| ower _or _upper

hell o world

(1 row

Here, the upper case parameter is omitted, so it receives its default value of f al se, resulting in
lower case output. In positional notation, arguments can be omitted from right to left so long as they
have defaults.

Using Named Notation

In named notation, each argument's name is specified using => to separate it from the argument
expression. For example:

SELECT concat | ower_or_upper(a => "Hello', b => "Wrld);
concat _| ower _or _upper

hello world

(1 row

57

SQL Syntax

4.3.3.

Again, the argument upper case was omitted so it is set to f al se implicitly. One advantage of
using named notation is that the arguments may be specified in any order, for example:

SELECT concat | ower _or_upper(a => "Hello', b => "Wrld', uppercase
=> true);
concat _| ower _or _upper

HELLO WORLD
(1 row

SELECT concat | ower _or_upper(a => '"Hell o', uppercase => true, b =>
"World');
concat _| ower _or _upper

HELLO WORLD
(1 row

An older syntax based on ":=" is supported for backward compatibility:

SELECT concat _| ower _or_upper(a := "Hello', uppercase := true, b :=
"World');
concat _| ower _or _upper
HELLO WORLD

(1 row

Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat | ower _or_upper('Hello', 'Wrld', uppercase => true);
concat _| ower _or _upper

HELLO WORLD
(1 row)

In the above query, the arguments a and b are specified positionally, whileupper case is specified
by name. In thisexample, that adds little except documentation. With amore complex function having
numerous parametersthat have default values, named or mixed notation can saveagreat deal of writing
and reduce chances for error.

Note

Named and mixed call notations currently cannot be used when calling an aggregate function
(but they do work when an aggregate function is used as a window function).

58

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one's data. In a relational
database, the raw datais stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can
be assigned to tables. Finally, we will briefly look at other features that affect the data storage, such
as inheritance, table partitioning, views, functions, and triggers.

5.1. Table Basics

A tablein arelational database is much like a table on paper: It consists of rows and columns. The
number and order of the columnsisfixed, and each column hasaname. The number of rowsisvariable
— it reflects how much data is stored at a given moment. SQL does not make any guarantees about
the order of the rowsin atable. When a table is read, the rows will appear in an unspecified order,
unless sorting is explicitly requested. Thisis covered in Chapter 7. Furthermore, SQL does not assign
unique identifiersto rows, so it is possible to have several completely identical rows in atable. This
is a consequence of the mathematical model that underlies SQL but is usually not desirable. Later in
this chapter we will see how to deal with thisissue.

Each column has adatatype. The datatype constrainsthe set of possible valuesthat can be assigned to
acolumn and assigns semanticsto the data stored in the column so that it can be used for computations.
For instance, a column declared to be of a numerical type will not accept arbitrary text strings, and
the data stored in such a column can be used for mathematical computations. By contrast, a column
declared to be of a character string type will accept almost any kind of data but it does not lend itself
to mathematical calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also
define their own data types. Most built-in data types have obvious names and semantics, so we defer
adetailed explanation to Chapter 8. Some of the frequently used datatypes arei nt eger for whole
numbers, nuner i ¢ for possibly fractional numbers, t ext for character strings, dat e for dates,
t i me for time-of-day values, and t i mest anp for values containing both date and time.

To create atable, you use the aptly named CREATE TABLE command. In this command you specify
at least a name for the new table, the names of the columns and the data type of each column. For
example:

CREATE TABLE ny _first_table (
first_colum text,
second_col um i nt eger

)

This creates a table named nmy_fi r st _t abl e with two columns. The first column is named
first_col um and has adatatype of t ext ; the second column has the name second_col um
and the type i nt eger. The table and column names follow the identifier syntax explained in
Section 4.1.1. The type names are usually also identifiers, but there are some exceptions. Note that the
column list is comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your
tables and columns that convey what kind of datathey store. So let'slook at amore realistic example:

CREATE TABLE products (
product _no i nteger,
name text,

59

Data Definition

price nunmeric

)

(Thenurer i c type can store fractional components, as would be typical of monetary amounts.)

Tip

When you create many interrelated tables it is wise to choose a consistent naming pattern for
the tables and columns. For instance, there is a choice of using singular or plural nouns for
table names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is
between 250 and 1600. However, defining a table with anywhere near this many columns is highly
unusual and often a questionable design.

If you no longer need atable, you can remove it using the DROP TABLE command. For example:

DROP TABLE ny first _table;
DROP TABLE products;

Attempting to drop atable that does not exist isan error. Nevertheless, itiscommonin SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the
script works whether or not the table exists. (If you like, you can usethe DROP TABLE | F EXI STS
variant to avoid the error messages, but thisis not standard SQL .)

If you need to modify atable that already exists, see Section 5.7 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding featuresto the tabl e definition to ensure dataintegrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest
of this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified
for some of the columns, those columns will be filled with their respective default values. A data
manipulation command can also request explicitly that a column be set to its default value, without
having to know what that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default valueis the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In atable definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric DEFAULT 9. 99

)

The default value can be an expression, which will be evaluated whenever the default valueisinserted
(not when thetableis created). A common exampleisfor at i nest anp column to have adefault of
CURRENT _TI MESTAMP, so that it gets set to the time of row insertion. Another common exampleis
generating a“serial number” for each row. In PostgreSQL thisistypically done by something like:

60

Data Definition

CREATE TABLE products (
product _no i nteger DEFAULT nextval (' products_product_no_seq'),

)

wherethenext val () function suppliessuccessive valuesfrom asequence object (see Section 9.17).
This arrangement is sufficiently common that there's a specia shorthand for it:

CREATE TABLE products (
product _no SERI AL,

)
The SERI AL shorthand is discussed further in Section 8.1.4.

5.3. Identity Columns

An identity column is a special column that is generated automatically from an implicit sequence. It
can be used to generate key values.

To create anidentity column, usethe GENERATED . . . AS | DENTI TY clausein CREATE TABLE,
for example:

CREATE TABLE peopl e (
id bigint GENERATED ALWAYS AS | DENTI TY,

)

or aternatively

CREATE TABLE peopl e (
id bigint GENERATED BY DEFAULT AS | DENTI TY,

);
See CREATE TABLE for more details.
If an | NSERT command is executed on the table with the identity column and no value is explicitly

specified for the identity column, then a value generated by the implicit sequence is inserted. For
example, with the above definitions and assuming additional appropriate columns, writing

| NSERT | NTO peopl e (name, address) VALUES ('A, 'foo');
| NSERT | NTO peopl e (name, address) VALUES ('B, 'bar');

would generate values for thei d column starting at 1 and result in the following table data:

id | nane | address

1] A | foo
2| B | bar

Alternatively, the keyword DEFAULT can be specified in place of a value to explicitly request the
sequence-generated value, like

61

Data Definition

| NSERT | NTO people (id, nane, address) VALUES (DEFAULT, 'C,
"baz');

Similarly, the keyword DEFAULT can be used in UPDATE commands.
Thus, in many ways, an identity column behaves like a column with a default value.

The clauses ALWAYS and BY DEFAULT in the column definition determine how explicitly user-
specified values are handled in | NSERT and UPDATE commands. In an | NSERT command, if
ALVAYS is selected, a user-specified value is only accepted if the | NSERT statement specifies
OVERRI DI NG SYSTEM VALUE. If BY DEFAULT is selected, then the user-specified value takes
precedence. Thus, using BY DEFAULT resultsin abehavior more similar to default values, where the
default value can be overridden by an explicit value, whereas ALWAY'S provides some more protection
against accidentally inserting an explicit value.

The data type of an identity column must be one of the data types supported by sequences. (See
CREATE SEQUENCE.) The properties of the associated sequence may be specified when creating
an identity column (see CREATE TABLE) or changed afterwards (see ALTER TABLE).

An identity column is automatically marked as NOT NULL. An identity column, however, does not
guarantee uniqueness. (A sequence normally returns unique values, but a sequence could be reset, or
values could be inserted manually into the identity column, as discussed above.) Unigqueness would
need to be enforced using a PRI MARY KEY or UNI QUE constraint.

In table inheritance hierarchies, identity columns and their propertiesin achild table are independent
of those in its parent tables. A child table does not inherit identity columns or their properties
automatically from the parent. During | NSERT or UPDATE, a column istreated as an identity column
if that column isanidentity column in the table named in the statement, and the corresponding i dentity
properties are applied.

Partitions inherit identity columns from the partitioned table. They cannot have their own identity
columns. The properties of a given identity column are consistent across all the partitions in the
partition hierarchy.

5.4. Generated Columns

A generated column is a special column that is always computed from other columns. Thus, it is for
columns what a view is for tables. There are two kinds of generated columns; stored and virtual. A
stored generated column is computed when it is written (inserted or updated) and occupies storage as
if it were anormal column. A virtual generated column occupies no storage and is computed when it
isread. Thus, avirtua generated columnissimilar to aview and a stored generated columnis similar
to amaterialized view (except that it is always updated automatically).

To create a generated column, use the GENERATED ALWAYS AS clause in CREATE TABLE, for
example:

CREATE TABLE peopl e (

hei ght _cm nuneri c,
hei ght _in numeric GENERATED ALWAYS AS (height _cm/ 2.54)
)

A generated column isby default of thevirtual kind. Usethe keywords VI RTUAL or STOREDto make
the choice explicit. See CREATE TABLE for more details.

A generated column cannot be written to directly. In | NSERT or UPDATE commands, a value cannot
be specified for a generated column, but the keyword DEFAULT may be specified.

62

Data Definition

Consider the differences between a column with adefault and agenerated column. The column default
is evaluated once when the row isfirst inserted if no other value was provided; a generated column is
updated whenever the row changes and cannot be overridden. A column default may not refer to other
columns of the table; a generation expression would normally do so. A column default can usevolatile
functions, for example r andont() or functions referring to the current time; this is not allowed for
generated columns.

Severa restrictions apply to the definition of generated columns and tables involving generated
columns:

The generation expression can only use immutabl e functions and cannot use subqueries or reference
anything other than the current row in any way.

A generation expression cannot reference another generated column.

A generation expression cannot reference a system column, except t abl eoi d.

A generated column cannot have a column default or an identity definition.

A generated column cannot be part of a partition key.

Foreign tables can have generated columns. See CREATE FOREIGN TABLE for details.

For inheritance and partitioning:

If a parent column is a generated column, its child column must also be a generated column
of the same kind (stored or virtual); however, the child column can have a different generation
expression.

For stored generated columns, the generation expression that is actually applied during insert or
update of arow is the one associated with the table that the row is physically in. (Thisis unlike
the behavior for column defaults: for those, the default value associated with the table named in
the query applies.) For virtual generated columns, the generation expression of the table named
in the query applies when atableis read.

If aparent column is not a generated column, its child column must not be generated either.

For inherited tables, if you write a child column definition without any GENERATED clause in
CREATE TABLE ... | NHERI TS, thenits GENERATED clause will automatically be copied
from the parent. ALTER TABLE ... | NHERI T will insist that parent and child columns
already match asto generation status, but it will not require their generation expressionsto match.

Similarly for partitioned tables, if you write a child column definition without any GENERATED
clause in CREATE TABLE ... PARTITION OF, then its GENERATED clause will
automatically be copied from the parent. ALTER TABLE ... ATTACH PARTI TI ONwill
insist that parent and child columns already match as to generation status, but it will not require
their generation expressions to match.

In case of multiple inheritance, if one parent column is a generated column, then all parent
columns must be generated columns. If they do not all have the same generation expression, then
the desired expression for the child must be specified explicitly.

Additional considerations apply to the use of generated columns.

» Generated columns maintain access privileges separately from their underlying base columns. So,
it is possible to arrange it so that a particular role can read from a generated column but not from
the underlying base columns.

For virtual generated columns, this is only fully secure if the generation expression uses only
leakproof functions (see CREATE FUNCTION), but thisis not enforced by the system.

63

Data Definition

* Privileges of functions used in generation expressions are checked when the expression is actually
executed, on write or read respectively, asif the generation expression had been called directly from
the query using the generated column. The user of agenerated column must have permissionsto call
all functions used by the generation expression. Functionsin the generation expression are executed
with the privileges of the user executing the query or the function owner, depending on whether the
functions are defined as SECURI TY | NVOKER or SECURI TY DEFI NER.

* Generated columns are, conceptually, updated after BEFORE triggers have run. Therefore, changes
made to base columns in a BEFORE trigger will be reflected in generated columns. But conversely,
itisnot allowed to access generated columns in BEFORE triggers.

» Generated columnsare allowed to bereplicated during logical replication according to the CREATE
PUBLI CATI ON parameter publ i sh_gener at ed_col uims or by including them in the
column list of the CREATE PUBLI CATI ON command. Thisis currently only supported for stored
generated columns. See Section 29.6 for details.

5.5. Constraints

5.5.1.

Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide istoo coarse. For example, a column containing a product price
should probably only accept positive values. But there is no standard data type that accepts only
positive numbers. Another issue isthat you might want to constrain column data with respect to other
columns or rows. For example, in a table containing product information, there should be only one
row for each product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as
much control over the data in your tables as you wish. If a user attempts to store data in a column
that would violate a constraint, an error israised. This applies even if the value came from the default
value definition.

Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in
a certain column must satisfy a Boolean (truth-value) expression. For instance, to require positive
product prices, you could use:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric CHECK (price > 0)

)

As you see, the constraint definition comes after the data type, just like default value definitions.
Default values and constraints can be listed in any order. A check constraint consists of the key word
CHECK followed by an expression in parentheses. The check constraint expression should involve the
column thus constrained, otherwise the constraint would not make too much sense.

Y ou can also give the constraint a separate name. This clarifies error messages and allowsyou to refer
to the constraint when you need to change it. The syntax is:

CREATE TABLE products (
product _no i nteger,
name text,
price numeri c CONSTRAI NT positive price CHECK (price > 0)

)

Data Definition

So, to specify anamed constraint, use the key word CONSTRAI NT followed by an identifier followed
by the constraint definition. (If you don't specify a constraint name in this way, the system chooses
aname for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric CHECK (price > 0),
di scounted_price nunmeric CHECK (discounted price > 0),
CHECK (price > discounted price)

)

The first two constraints should ook familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one isatable constraint
becauseit iswritten separately from any one column definition. Column constraints can a so bewritten
astable constraints, whilethereverseis not necessarily possible, since acolumn constraint is supposed
to refer to only the column it is attached to. (PostgreSQL doesn't enforce that rule, but you should
follow it if you want your table definitions to work with other database systems.) The above example
could also be written as:

CREATE TABLE products (
product _no i nteger,
name text,
price nurmeric,
CHECK (price > 0),
di scount ed_price nureric,
CHECK (di scounted_price > 0),
CHECK (price > discounted _price)

or even:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric CHECK (price > 0),
di scounted_price numeric,
CHECK (di scounted price > 0 AND price > discounted price)

)
It's amatter of taste.

Names can be assigned to table constraintsin the same way as column constraints:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,
CHECK (price > 0),
di scounted_price numeric,

65

Data Definition

)

CHECK (di scounted_price > 0),
CONSTRAI NT val i d_di scount CHECK (price > discounted_price)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the
null value. Since most expressions will evaluate to the null value if any operand is null, they will not
prevent null values in the constrained columns. To ensure that a column does not contain null values,
the not-null constraint described in the next section can be used.

Note

PostgreSQL does not support CHECK constraints that reference table data other than the new
or updated row being checked. While a CHECK constraint that violates this rule may appear
to work in simple tests, it cannot guarantee that the database will not reach a state in which
the constraint condition isfalse (due to subsequent changes of the other row(s) involved). This
would cause adatabase dump and restoreto fail. Therestore could fail even when the complete
database state is consistent with the constraint, due to rows not being loaded in an order that
will satisfy the constraint. If possible, use UNI QUE, EXCLUDE, or FOREI GN KEY constraints
to express cross-row and cross-table restrictions.

If what you desire is a one-time check against other rows at row insertion, rather than a
continuously-maintained consistency guarantee, a custom trigger can be used to implement
that. (This approach avoids the dump/restore problem because pg_dump does not reinstall
triggersuntil after restoring data, so that the check will not be enforced during adump/restore.)

Note

PostgreSQL assumes that CHECK constraints' conditions are immutable, that is, they will
alwaysgivethe sameresult for the sameinput row. Thisassumptioniswhat justifiesexamining
CHECK constraints only when rows are inserted or updated, and not at other times. (The
warning above about not referencing other table dataisreally aspecial case of thisrestriction.)

An example of acommon way to break this assumption isto reference a user-defined function
in a CHECK expression, and then change the behavior of that function. PostgreSQL does
not disallow that, but it will not notice if there are rows in the table that now violate the
CHECK constraint. That would cause a subsequent database dump and restore to fail. The
recommended way to handle such a changeis to drop the constraint (using ALTER TABLE),
adjust the function definition, and re-add the constraint, thereby rechecking it against al table
rows.

5.5.2. Not-Null Constraints

A not-null constraint simply specifiesthat acolumn must not assumethe null value. A syntax example:

CREATE TABLE products (

)

product no i nteger NOT NULL,
name text NOT NULL,
price nuneric

An explicit constraint name can also be specified, for example:

66

Data Definition

CREATE TABLE products (
product _no i nteger NOT NULL,
nane text CONSTRAI NT products_name_not_null NOT NULL,
price nunmeric

)

A not-null constraint is usually written as a column constraint. The syntax for writing it as a table
congtraint is

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,

NOT NULL product _no,
NOT NULL nane

)
But this syntax is not standard and mainly intended for use by pg_dump.

A not-null constraint is functionally equivalent to creating a check constraint CHECK
(columm_nane IS NOT NULL), but in PostgreSQL creating an explicit not-null constraint is
more efficient.

Of course, acolumn can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (
product _no i nteger NOT NULL,
nane text NOT NULL,
price nunmeric NOT NULL CHECK (price > 0)

)
The order doesn't matter. It does not necessarily determine in which order the constraints are checked.
However, a column can have at most one explicit not-null constraint.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column
must be null, which would surely be useless. Instead, this simply selects the default behavior that the
column might be null. The NULL constraint is not present in the SQL standard and should not be used
in portable applications. (It was only added to PostgreSQL to be compatible with some other database
systems.) Some users, however, likeit because it makesit easy to toggle the constraint in ascript file.
For example, you could start with:

CREATE TABLE products (
product _no integer NULL,
name text NULL,
price nuneric NULL

)

and then insert the NOT key word where desired.

Tip

In most database designs the majority of columns should be marked not null.

5.5.3. Unique Constraints

67

Data Definition

Unique constraints ensure that the data contained in acolumn, or agroup of columns, is unique among
all therowsin the table. The syntax is:

CREATE TABLE products (
product _no integer UN QUE
name text,
price numeric

)

when written as a column constraint, and:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,

UNI QUE (product_no)

)
when written as a table constraint.
To define a unique constraint for a group of columns, write it as a table constraint with the column

names separated by commas:

CREATE TABLE exanpl e (

a integer,
b integer,
c integer,

UNI QUE (a, c)
)

This specifiesthat the combination of valuesin theindicated columnsis unique acrossthe wholetable,
though any one of the columns need not be (and ordinarily isn't) unique.

Y ou can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product _no i nteger CONSTRAI NT rust _be_different UN QUE,
name text,
price numeric

)

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written
asaunique constraint, but it is possible to enforce such arestriction by creating aunique partial index.

In general, aunique constraint isviolated if thereis more than one row in the table where the values of
all of the columnsincluded in the constraint are equal. By default, two null values are not considered
equal in this comparison. That means even in the presence of aunique constraint it is possible to store
duplicate rows that contain anull value in at least one of the constrained columns. This behavior can
be changed by adding the clause NULLS NOT DI STI NCT, like

CREATE TABLE products (
product _no i nteger UNI QUE NULLS NOT DI STI NCT,

68

Data Definition

5.5.4.

name text,
price nunmeric

)

or

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,
UNI QUE NULLS NOT DI STI NCT (product _no)

)

The default behavior can be specified explicitly using NULLS DI STI NCT. The default null
treatment in unique constraints is implementation-defined according to the SQL standard, and other
implementations have a different behavior. So be careful when developing applications that are
intended to be portable.

Primary Keys

A primary key constraint indicates that a column, or group of columns, can be used as a unique
identifier for rows in the table. This requires that the values be both unique and not null. So, the
following two table definitions accept the same data:

CREATE TABLE products (
product _no i nteger UN QUE NOT NULL,
name text,
price nunmeric

)

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nuneric

)

Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE exampl e (

a integer,
b integer,
c integer,

PRI MARY KEY (a, c)
)

Adding a primary key will automatically create a unique B-tree index on the column or group of
columns listed in the primary key, and will force the column(s) to be marked NOT NULL.

A table can have at most one primary key. (There can be any number of unique constraints, which
combined with not-null constraints are functionally almost the same thing, but only one can be
identified asthe primary key.) Relational database theory dictates that every table must have aprimary
key. Thisruleis not enforced by PostgreSQL, but it is usually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a
GUI application that allows modifying row values probably needs to know the primary key of atable

69

Data Definition

5.5.5.

to be able to identify rows uniquely. There are also various ways in which the database system makes
use of aprimary key if one has been declared; for example, the primary key defines the default target
column(s) for foreign keysreferencing its table.

Foreign Keys

A foreign key constraint specifies that the valuesin acolumn (or agroup of columns) must match the
values appearing in some row of another table. We say this maintainsthe referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price numeric

)

Let's also assume you have atable storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define aforeign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products (product_no),
qgquantity integer

)

Now it is impossible to create orders with non-NULL pr oduct _no entries that do not appear in
the products table.

We say that in this situation the orders table is the referencing table and the products table is the
referenced table. Similarly, there are referencing and referenced columns.

Y ou can a'so shorten the above command to:

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products,
guantity integer

)

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

Y ou can assign your own name for aforeign key constraint, in the usual way.

A foreign key can also constrain and reference agroup of columns. Asusual, it then needsto bewritten
in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (

a integer PRI MARY KEY,

b integer,

c integer,

FOREI GN KEY (b, c) REFERENCES ot her _table (cl, c2)
)

70

Data Definition

Of course, the number and type of the constrained columns need to match the number and type of
the referenced columns.

Sometimes it is useful for the “other table” of a foreign key constraint to be the same table; thisis
called a self-referential foreign key. For example, if you want rows of atable to represent nodes of
atree structure, you could write

CREATE TABLE tree (
node_id integer PRI MARY KEY,
parent id integer REFERENCES tree,
name text,

)

A top-level node would have NULL par ent _i d, whilenon-NULL par ent _i d entrieswould be
constrained to reference valid rows of the table.

A table can have more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to
allow one order to contain possibly many products (which the structure above did not allow). You
could use this table structure:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nuneric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order_itens (
product _no i nteger REFERENCES products,
order_id integer REFERENCES orders,
guantity integer,
PRI MARY KEY (product_no, order _id)

)

Notice that the primary key overlaps with the foreign keysin the last table.

We know that the foreign keys disallow creation of ordersthat do not relate to any products. But what
if aproduct is removed after an order is created that references it? SQL allows you to handle that as
well. Intuitively, we have afew options:

» Disallow deleting a referenced product
» Delete the orders aswell
* Something else?

To illustrate this, let's implement the following policy on the many-to-many relationship example
above: when someone wants to remove a product that is still referenced by an order (via
order _i t ens), wedisalow it. If someone removes an order, the order items are removed as well:

71

Data Definition

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nunmeric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order _itenms (
product _no i nteger REFERENCES products ON DELETE RESTRI CT,
order _id integer REFERENCES orders ON DELETE CASCADE,
guantity integer,
PRI MARY KEY (product_no, order_id)

)

Thedefault ON DELETE actionisON DELETE NO ACTI ON,; thisdoes not need to be specified. This
means that the deletion in the referenced table is allowed to proceed. But the foreign-key constraint is
still required to be satisfied, so this operation will usually result in an error. But checking of foreign-
key constraints can also be deferred to later in the transaction (not covered in this chapter). In that
case, theNO ACTI ON setting would allow other commandsto “fix” the situation before the constraint
is checked, for example by inserting another suitable row into the referenced table or by deleting the
now-dangling rows from the referencing table.

RESTRI CT isastricter setting than NO ACTI ON. It preventsdeletion of areferenced row. RESTRI CT
does not allow the check to be deferred until later in the transaction.

CASCADE specifies that when a referenced row is deleted, row(s) referencing it should be
automatically deleted aswell.

There aretwo other options: SET NULL and SET DEFAULT. These cause the referencing column(s)
in the referencing row(s) to be set to nulls or their default values, respectively, when the referenced
row is deleted. Note that these do not excuse you from observing any constraints. For example, if an
action specifies SET DEFAULT but the default value would not satisfy the foreign key constraint,
the operation will fail.

The appropriate choice of ON DELETE action depends on what kinds of objects the related tables
represent. When the referencing tabl e represents something that is acomponent of what is represented
by the referenced table and cannot exist independently, then CASCADE could be appropriate. If the
two tables represent independent objects, then RESTRI CT or NO ACTI ON is more appropriate; an
application that actually wants to delete both objects would then have to be explicit about this and
run two delete commands. In the above example, order items are part of an order, and it is convenient
if they are deleted automatically if an order is deleted. But products and orders are different things,
and so making a deletion of a product automatically cause the deletion of some order items could be
considered problematic. TheactionsSET NULL or SET DEFAULT can beappropriateif aforeign-key
relationship represents optional information. For example, if the products table contained a reference
to a product manager, and the product manager entry gets deleted, then setting the product's product
manager to null or adefault might be useful.

Theactions SET NULL and SET DEFAULT can take a column list to specify which columns to set.
Normally, al columns of the foreign-key constraint are set; setting only a subset is useful in some
special cases. Consider the following example:

CREATE TABLE tenants (
tenant _id i nteger PRI MARY KEY

72

Data Definition

5.5.6.

)

CREATE TABLE users (
tenant _id i nteger REFERENCES tenants ON DELETE CASCADE,
user _id integer NOT NULL,
PRI MARY KEY (tenant _id, user_id)

)

CREATE TABLE posts (

tenant _id i nteger REFERENCES tenants ON DELETE CASCADE,

post _id integer NOT NULL,

aut hor _id integer,

PRI MARY KEY (tenant _id, post_id),

FOREI GN KEY (tenant _id, author_id) REFERENCES users ON DELETE
SET NULL (author _id)

);

Without the specification of the column, the foreign key would also set the columnt enant _i d to
null, but that column is still required as part of the primary key.

Analogousto ON DELETE thereisaso ON UPDATE which is invoked when a referenced column
is changed (updated). The possible actions are the same, except that column lists cannot be specified
for SET NULL and SET DEFAULT. In this case, CASCADE means that the updated values of the
referenced column(s) should be copied into the referencing row(s). Thereisalso anoticeabledifference
between ON UPDATE NO ACTI ON (the default) and ON UPDATE RESTRI CT. The former will
allow the update to proceed and the foreign-key constraint will be checked against the state after the
update. Thelatter will prevent the update to run even if the state after the update would still satisfy the
constraint. This prevents updating a referenced row to a value that is distinct but compares as equal
(for example, a character string with a different case variant, if a character string type with a case-
insensitive collation is used).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing
columnsare null. If MATCH FULL isadded to the foreign key declaration, areferencing row escapes
satisfying the constraint only if all its referencing columns are null (so a mix of null and non-null
valuesisguaranteed to fail aMATCH FULL constraint). If you don't want referencing rowsto be able
to avoid satisfying the foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint, or
are columns from a non-partial unique index. This means that the referenced columns always have
an index to allow efficient lookups on whether a referencing row has a match. Since a DELETE of
a row from the referenced table or an UPDATE of a referenced column will require a scan of the
referencing table for rows matching the old value, it is often a good idea to index the referencing
columnstoo. Becausethisis not always needed, and there are many choices available on how to index,
the declaration of aforeign key constraint does not automatically create an index on the referencing
columns.

More information about updating and deleting dataisin Chapter 6. Also see the description of foreign
key constraint syntax in the reference documentation for CREATE TABLE.

Exclusion Constraints

Exclusion constraintsensurethat if any two rowsare compared on the specified columnsor expressions
using the specified operators, at |east one of these operator comparisons will return false or null. The
syntax is.

CREATE TABLE circles (
c circle,
EXCLUDE USI NG gist (c WTH &&)

73

Data Definition

)
Seealso CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specifiedin the constraint
declaration.

5.6. System Columns

Every table has severa system columns that are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate from
whether the nameisakey word or not; quoting anamewill not allow you to escape these restrictions.)
Y ou do not really need to be concerned about these columns; just know they exist.

t abl eoi d

The OID of thetable containing thisrow. Thiscolumn is particularly handy for queriesthat select
from partitioned tables (see Section 5.12) or inheritance hierarchies (see Section 5.11), since
without it, it's difficult to tell which individual table arow came from. The t abl eoi d can be
joined against the oi d column of pg_cl ass to obtain the table name.

Xmn
Theidentity (transaction D) of theinserting transaction for thisrow version. (A row versionisan
individual state of arow; each update of arow createsanew row version for the samelogical row.)
cmn
The command identifier (starting at zero) within the inserting transaction.

Xmax

Theidentity (transaction D) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in avisible row version. That usually indicates that the
deleting transaction hasn't committed yet, or that an attempted del etion was rolled back.

cmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version withinitstable. Notethat althoughthect i d can be used
to locate the row version very quickly, arow's ct i d will change if it is updated or moved by
VACUUM FULL. Thereforect i d isuseless asalong-term row identifier. A primary key should
be used to identify logical rows.

Transaction identifiers are also 32-bit quantities. In along-lived database it is possible for transaction
IDs to wrap around. This is not a fatal problem given appropriate maintenance procedures; see
Chapter 24 for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the
long term (more than one billion transactions).

Command identifiers are also 32-hit quantities. This creates a hard limit of 2°2 (4 billion) SQL
commandswithin asingletransaction. In practice thislimit is not aproblem — notethat the limitison
the number of SQL commands, not the number of rows processed. Also, only commandsthat actually
modify the database contents will consume a command identifier.

5.7. Modifying Tables

74

Data Definition

5.7.1.

5.7.2.

When you create atable and you realize that you made amistake, or the requirements of the application
change, you can drop the table and create it again. But thisis not a convenient option if the table is
already filled with data, or if thetableisreferenced by other database objects (for instance aforeign key
constraint). Therefore PostgreSQL provides afamily of commands to make modifications to existing
tables. Note that thisis conceptually distinct from altering the data contained in the table: herewe are
interested in altering the definition, or structure, of the table.

You can:

e Add columns

* Remove columns

» Add constraints

* Remove constraints

» Change default values

» Change column data types
* Rename columns

¢ Renametables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

Adding a Column

To add a column, use acommand like:

ALTER TABLE products ADD COLUWN description text;

The new column isinitialy filled with whatever default value is given (null if you don't specify a
DEFAULT clause).

Tip

Adding a column with a constant default value does not require each row of the table to be
updated when the ALTER TABLE statement is executed. Instead, the default value will be
returned the next time the row is accessed, and applied when the table is rewritten, making the
ALTER TABLE very fast even on large tables.

If thedefault valueisvolatile(e.g.,cl ock_ti mest anp()) each row will need to be updated
withthevaluecalculated at thetime ALTER TABLE isexecuted. To avoid apotentialy lengthy
update operation, particularly if you intend to fill the column with mostly nondefault values
anyway, it may be preferable to add the column with no default, insert the correct values using
UPDATE, and then add any desired default as described below.

Y ou can a'so define constraints on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMWN description text CHECK (description
< '');

Infact al the optionsthat can be applied to acolumn descriptionin CREATE TABLE can be used here.

Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints | ater (see below) after you'vefilled in the new column correctly.

Removing a Column

To remove a column, use acommand like:

75

Data Definition

5.7.3.

5.7.4.

5.7.5.

ALTER TABLE products DROP COLUWN descri ption;

Whatever datawasin the column disappears. Table constraintsinvolving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will
not silently drop that constraint. Y ou can authorize dropping everything that depends on the column
by adding CASCADE:

ALTER TABLE products DROP COLUWN descri pti on CASCADE;

See Section 5.15 for a description of the general mechanism behind this.

Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (nane <> '');

ALTER TABLE products ADD CONSTRAI NT sone_nane UNI QUE (product no);

ALTER TABLE products ADD FOREI GN KEY (product group_id) REFERENCES
product _groups;

To add a not-null constraint, which is normally not written as a table constraint, this special syntax
isavailable:

ALTER TABLE products ALTER COLUWN product _no SET NOT NULL;
This command silently does nothing if the column already has a not-null constraint.

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

Removing a Constraint

To removeaconstraint you need to know itsname. If you gaveit anamethen that's easy. Otherwisethe
system assigned a generated name, which you need to find out. The psgl command\ d t abl enane
can be helpful here; other interfaces might also provide a way to inspect table details. Then the
command is:

ALTER TABLE products DROP CONSTRAI NT sone_nane;
Aswith dropping acolumn, you need to add CASCADE if you want to drop a constraint that something
else depends on. An example is that a foreign key constraint depends on a unique or primary key

constraint on the referenced column(s).

Simplified syntax is available to drop a not-null constraint:

ALTER TABLE products ALTER COLUWN product _no DROP NOT NULL;

Thismirrorsthe SET NOT NULL syntax for adding anot-null constraint. This command will silently
do nothing if the column does not have a not-null constraint. (Recall that a column can have at most
one not-null constraint, so it is never ambiguous which constraint this command acts on.)

Changing a Column's Default Value

To set anew default for a column, use acommand like:

76

Data Definition

5.7.6.

S5.7.7.

5.7.8.

ALTER TABLE products ALTER COLUWN price SET DEFAULT 7.77;

Notethat thisdoesn't affect any existing rowsinthetable, it just changesthe default for futurel NSERT
commands.

To remove any default value, use:

ALTER TABLE products ALTER COLUWN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop
adefault where one hadn't been defined, because the default isimplicitly the null value.

Changing a Column's Data Type

To convert acolumn to a different data type, use acommand like:

ALTER TABLE products ALTER COLUMWN price TYPE nuneric(10, 2);

This will succeed only if each existing entry in the column can be converted to the new type by an
implicit cast. If amore complex conversion is needed, you can add a USI NG clause that specifies how
to compute the new values from the old.

PostgreSQL will attempt to convert the column's default value (if any) to the new type, as well as
any constraints that involve the column. But these conversions might fail, or might produce surprising
results. It's often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUWN product _no TO product numnber;

Renaming a Table

To rename atable:

ALTER TABLE products RENAVE TO iterns;

5.8. Privileges

When an object is created, it is assigned an owner. The owner is normally the role that executed the
creation statement. For most kinds of objects, the initial state is that only the owner (or a superuser)
can do anything with the object. To alow other rolesto useit, privileges must be granted.

There are different kinds of privileges:. SELECT, | NSERT, UPDATE, DELETE, TRUNCATE,
REFERENCES, TRI GGER, CREATE, CONNECT, TEMPORARY, EXECUTE, USAGE, SET, ALTER
SYSTEM and MAI NTAI N. The privileges applicable to a particular object vary depending on the
object'stype (table, function, etc.). More detail about the meanings of these privileges appears below.
The following sections and chapters will also show you how these privileges are used.

Theright to modify or destroy an object isinherent in being the object's owner, and cannot be granted
or revoked initself. (However, likeall privileges, that right can beinherited by members of the owning
role; see Section 21.3.)

77

Data Definition

An object can be assigned to a new owner with an ALTER command of the appropriate kind for the
object, for example

ALTER TABLE tabl e_nane OMNER TO new_owner;

Superusers can always do this; ordinary roles can only do it if they are both the current owner of the
object (or inherit the privileges of the owning role) and ableto SET RCLE to the new owning role.

To assign privileges, the GRANT command is used. For example, if j oe is an existing role, and
account s isan existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO j oe;
Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The specia “role’ name PUBLI C can be used to grant a privilege to every role on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database —
for details see Chapter 21.

To revoke a previously-granted privilege, use the fittingly named REV OKE command:

REVOKE ALL ON accounts FROM PUBLI C,

Ordinarily, only the object's owner (or a superuser) can grant or revoke privileges on an object.
However, it is possible to grant a privilege “with grant option”, which gives the recipient the right to
grant it inturnto others. If the grant option is subsequently revoked then all who received the privilege
from that recipient (directly or through a chain of grants) will lose the privilege. For details see the
GRANT and REV OKE reference pages.

An object's owner can choose to revoke their own ordinary privileges, for example to make a table
read-only for themselves as well as others. But owners are always treated as holding all grant options,
so they can always re-grant their own privileges.

The available privileges are:
SELECT

Allows SELECT from any column, or specific column(s), of atable, view, materialized view, or
other table-like object. Also alows use of COPY TO. This privilege is also needed to reference
existing column valuesin UPDATE, DEL ETE, or MERGE. For sequences, thisprivilegealso allows
use of thecur r val function. For large objects, this privilege alows the object to be read.

| NSERT

Allows | NSERT of a new row into atable, view, etc. Can be granted on specific column(s), in
which case only those columns may be assigned to inthe | NSERT command (other columns will
therefore receive default values). Also alows use of COPY FROM

UPDATE

Allows UPDATE of any column, or specific column(s), of a table, view, etc. (In practice, any
nontrivial UPDATE command will require SELECT privilege as well, since it must reference
table columns to determine which rows to update, and/or to compute new values for columns.)
SELECT ... FOR UPDATEand SELECT ... FOR SHARE aso require this privilege on
at least one column, in addition to the SELECT privilege. For sequences, this privilege allows
use of the next val and set val functions. For large objects, this privilege allows writing or
truncating the object.

78

Data Definition

DELETE

Allows DELETE of arow from atable, view, etc. (In practice, any nontrivial DELETE command
will require SELECT privilege aswell, since it must reference table columns to determine which
rows to delete.)

TRUNCATE
Allows TRUNCATE on atable.
REFERENCES
Allows creation of aforeign key constraint referencing atable, or specific column(s) of atable.
TRI GGER
Allows creation of atrigger on atable, view, etc.
CREATE

For databases, allows new schemas and publicationsto be created within the database, and alows
trusted extensionsto be installed within the database.

For schemas, allows new objects to be created within the schema. To rename an existing object,
you must own the object and have this privilege for the containing schema.

For tablespaces, allows tables, indexes, and temporary files to be created within the tablespace,
and allows databases to be created that have the tablespace as their default tablespace.

Note that revoking this privilege will not alter the existence or location of existing objects.
CONNECT

Allows the grantee to connect to the database. This privilege is checked at connection startup (in
addition to checking any restrictionsimposed by pg_hba. conf).

TEMPORARY
Allows temporary tables to be created while using the database.
EXECUTE

Allows calling a function or procedure, including use of any operators that are implemented on
top of thefunction. Thisistheonly type of privilegethat isapplicableto functions and procedures.

USAGE

For procedural languages, allows use of the languagefor the creation of functionsin that language.
Thisisthe only type of privilege that is applicable to procedural languages.

For schemas, allows access to objects contained in the schema (assuming that the objects own
privilegerequirementsare al so met). Essentially thisallowsthegranteeto “look up” objectswithin
the schema. Without this permission, it is still possible to see the object names, e.g., by querying
system catalogs. Also, after revoking this permission, existing sessions might have statements
that have previously performed this lookup, so this is not a completely secure way to prevent
object access.

For sequences, allows use of the cur r val and next val functions.

For types and domains, allows use of the type or domain in the creation of tables, functions, and
other schema objects. (Note that this privilege does not control all “usage” of the type, such as
values of thetype appearing in queries. It only prevents objectsfrom being created that depend on

79

Data Definition

the type. The main purpose of this privilege is controlling which users can create dependencies
on atype, which could prevent the owner from changing the type later.)

For foreign-data wrappers, allows creation of new servers using the foreign-data wrapper.

For foreign servers, allows creation of foreign tables using the server. Grantees may also create,
alter, or drop their own user mappings associated with that server.

SET

Allowsaserver configuration parameter to be set to anew valuewithin the current session. (While
this privilege can be granted on any parameter, it is meaningless except for parametersthat would
normally require superuser privilege to set.)

ALTER SYSTEM

Allows a server configuration parameter to be configured to a new value using the ALTER
SYSTEM command.

MAI NTAI N

Allows VACUUM ANALYZE, CLUSTER, REFRESH NMATERI ALI ZED VI EW REI NDEX, and
LOCK TABLE on arelation.

Theprivilegesrequired by other commandsarelisted on thereference page of the respective command.

PostgreSQL grants privileges on some types of abjects to PUBLI C by default when the objects are
created. No privileges are granted to PUBLI C by default on tables, table columns, sequences, foreign
data wrappers, foreign servers, large objects, schemas, tablespaces, or configuration parameters. For
other types of objects, the default privileges granted to PUBLI C are as follows: CONNECT and
TEMPORARY (createtemporary tables) privilegesfor databases, EXECUTE privilegefor functionsand
procedures; and USAGE privilege for languages and data types (including domains). The object owner
can, of course, REVOKE both default and expressly granted privileges. (For maximum security, issue
the REVOKE in the same transaction that creates the object; then there is no window in which another
user can use the object.) Also, these default privilege settings can be overridden using the ALTER
DEFAULT PRIVILEGES command.

Table 5.1 shows the one-letter abbreviations that are used for these privilege types in ACL values.
You will see these letters in the output of the psgl commands listed below, or when looking at ACL
columns of system catal ogs.

Table5.1. ACL Privilege Abbreviations

Privilege Abbreviation Applicable Object Types

SELECT r (“read”) LARGE OBJECT, SEQUENCE, TABLE (and
table-like objects), table column

| NSERT a (“append”) TABLE, table column

UPDATE w (“write”) LARCGE OBJECT, SEQUENCE, TABLE, table
column

DELETE d TABLE

TRUNCATE D TABLE

REFERENCES X TABLE, table column

TRI GGER t TABLE

CREATE C DATABASE, SCHEMA, TABLESPACE

CONNECT c DATABASE

TEMPORARY T DATABASE

80

Data Definition

Privilege Abbreviation Applicable Object Types

EXECUTE X FUNCTI ON, PROCEDURE

USAGE U DOMAI N, FOREI GN DATA WRAPPER,
FORElI GN SERVER, LANGUAGE, SCHEMA,
SEQUENCE, TYPE

SET S PARAMVETER

ALTER SYSTEM A PARAMVETER

MAI NTAI N m TABLE

Table 5.2 summarizes the privileges available for each type of SQL object, using the abbreviations
shown above. It also shows the psgl command that can be used to examine privilege settings for each

object type.

Table5.2. Summary of Access Privileges

Object Type All Privileges Default PUBLI C |psql Command
Privileges

DATABASE CTc Tc \

DOVAI N u U \ dD+

FUNCTI ON or PROCEDURE X X \ df +

FORElI GN DATA WRAPPER U none \ dew+

FOREI GN SERVER U none \ des+

LANGUACE u U \dL+

LARCE OBJECT rw none \dl +

PARAMETER sA none \ dconfi g+

SCHEMA uc none \dn+

SEQUENCE rwJ none \dp

TABLE (and table-like objects) ar wdDxt m none \ dp

Table column ar wx none \ dp

TABLESPACE C none \ db+

TYPE u U \dT+

The privileges that have been granted for a particular object are displayed as a list of acl i t em
entries, each having the format:

grant ee=privil ege-abbreviation[*].../grantor

Eachacl i t emlistsall the permissions of one grantee that have been granted by a particular grantor.
Specific privileges are represented by one-letter abbreviations from Table 5.1, with * appended if the
privilege was granted with grant option. For example, cal vi n=r *w/ hobbes specifiesthat therole
cal vi n has the privilege SELECT (r) with grant option (*) as well as the non-grantable privilege
UPDATE (w), both granted by the role hobbes. If cal vi n aso has some privileges on the same
object granted by a different grantor, those would appear as a separate acl i t ementry. An empty
granteefieldinanacl i t emstandsfor PUBLI C.

As an example, suppose that user mi r i amcreates table nyt abl e and does:

GRANT SELECT ON nytabl e TO PUBLI C,
GRANT SELECT, UPDATE, |NSERT ON nytable TO admi n;

81

Data Definition

GRANT SELECT (col 1), UPDATE (col1) ON nytable TO miriamrw,

Then psgl's\ dp command would show:

=> \dp nytable
Access privil eges

Schema | Name | Type | Access privil eges | Col um
privil eges | Policies
-------- T
o e e e e e e oo Fomm e
public | mytable | table | mriamrarwdDxtm mriam+| col 1:
+
| | | =r/mriam +|

mriamrw=srw mriam |
| | | admi n=arw/ mriam |
|

(1 row)

If the “Access privileges’ column is empty for a given object, it means the object has default
privileges (that is, its privileges entry in the relevant system catalog is null). Default privileges always
include all privileges for the owner, and can include some privileges for PUBLI C depending on
the object type, as explained above. The first GRANT or REVOKE on an object will instantiate the
default privileges (producing, for example, mi ri am=ar wdDxt / mi ri am and then modify them
per the specified request. Similarly, entries are shown in “Column privileges’ only for columns
with nondefault privileges. (Note: for this purpose, “default privileges’ always means the built-in
default privileges for the object's type. An object whose privileges have been affected by an ALTER
DEFAULT PRI VI LEGES command will always be shown with an explicit privilege entry that
includes the effects of the ALTER.)

Notice that the owner'simplicit grant options are not marked in the access privileges display. A * will
appear only when grant options have been explicitly granted to someone.

The “Access privileges’ column shows (none) when the object's privileges entry is non-null but
empty. This means that no privileges are granted at all, even to the object's owner — arare situation.
(The owner still has implicit grant options in this case, and so could re-grant her own privileges; but
she has none at the moment.)

5.9. Row Security Policies

In addition to the SQL-standard privilege system available through GRANT, tables can have row
security policies that restrict, on a per-user basis, which rows can be returned by normal queries or
inserted, updated, or deleted by data modification commands. Thisfeatureisalso known as Row-Level
Security. By default, tables do not have any policies, so that if a user has access privileges to atable
according to the SQL privilege system, all rowswithinit areequally availablefor querying or updating.

When row security is enabled on a table (with ALTER TABLE ... ENABLE ROW LEVEL
SECURITY), all normal access to the table for selecting rows or modifying rows must be allowed by
arow security policy. (However, the table's owner istypically not subject to row security policies.) If
no policy exists for the table, a default-deny policy is used, meaning that no rows are visible or can
be modified. Operations that apply to the whole table, such as TRUNCATE and REFERENCES, are
not subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified
to apply to ALL commands, or to SELECT, | NSERT, UPDATE, or DELETE. Multiple roles can be
assigned to a given policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to a policy, an expression is required that
returns a Boolean result. This expression will be evaluated for each row prior to any conditions or

82

Data Definition

functions coming from the user's query. (The only exceptionsto thisruleare | eakpr oof functions,
which are guaranteed to not leak information; the optimizer may choose to apply such functions ahead
of the row-security check.) Rowsfor which the expression doesnot returnt r ue will not be processed.
Separate expressions may be specified to provide independent control over the rowswhich arevisible
and the rows which are allowed to be modified. Policy expressions are run as part of the query and
with the privileges of the user running the query, although security-definer functions can be used to
access data not available to the calling user.

Superusers and roles with the BYPASSRLS attribute always bypass the row security system when
accessing atable. Table ownersnormally bypassrow security aswell, though atable owner can choose
to be subject to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

Enabling and disabling row security, as well as adding policies to atable, is aways the privilege of
the table owner only.

Policies are created using the CREATE POLICY command, atered using the ALTER POLICY
command, and dropped using the DROP POLICY command. To enable and disable row security for
agiven table, usethe ALTER TABLE command.

Each policy has aname and multiple policies can be defined for atable. As policies are table-specific,
each policy for atable must have a unique name. Different tables may have policies with the same
name.

When multiple policies apply to a given query, they are combined using either OR (for permissive
policies, which arethe default) or using AND (for restrictive policies). The ORbehavior issimilar to the
rulethat agiven role hasthe privileges of al rolesthat they are amember of. Permissivevs. restrictive
policies are discussed further below.

Asasimple example, hereishow to create apolicy ontheaccount relation to allow only members
of the manager s role to access rows, and only rows of their accounts:

CREATE TABLE accounts (nanager text, conpany text, contact_emil
text);

ALTER TABLE accounts ENABLE ROW LEVEL SECURITY,;

CREATE POLI CY account _managers ON accounts TO managers
USI NG (manager = current_user);

The policy above implicitly providesa W TH CHECK clause identical to its USI NG clause, so that
the constraint applies both to rows selected by a command (so a manager cannot SELECT, UPDATE,
or DEL ETE existing rows belonging to a different manager) and to rows modified by a command (so
rows belonging to a different manager cannot be created vial NSERT or UPDATE).

If no role is specified, or the special user name PUBLI Cis used, then the policy appliesto all users
on the system. To allow all users to access only their own row in auser s table, a simple policy
can be used:

CREATE PCOLI CY user _policy ON users
USI NG (user_name = current_user);

Thisworks similarly to the previous example.

To use adifferent policy for rows that are being added to the table compared to those rows that are
visible, multiple policies can be combined. This pair of policieswould allow all usersto view all rows
intheuser s table, but only modify their own:

83

Data Definition

CREATE PCLI CY user_sel _policy ON users
FOR SELECT
USI NG (true);

CREATE PCLI CY user _nmod_policy ON users
USI NG (user_nanme = current_user);

In a SELECT command, these two policies are combined using OR, with the net effect being that all
rows can be selected. In other command types, only the second policy applies, so that the effects are
the same as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does
not remove any policies that are defined on the table; they are simply ignored. Then al rowsin the
table are visible and modifiable, subject to the standard SQL privileges system.

Below is a larger example of how this feature can be used in production environments. The table
passwd emulates a Unix password file:

-- Sinple passwd-file based exanpl e
CREATE TABLE passwd (

user _nane text UNI QUE NOT NULL,
pwhash t ext,
ui d int PRI MARY KEY,
gid int NOT NULL,
real _nane text NOT NULL,
honme_phone t ext,
extra_info t ext,
hone _dir text NOT NULL,
shel | text NOT NULL
)
CREATE ROLE admin; -- Adnministrator
CREATE RCLE bob; -- Normal user
CREATE ROLE alice; -- Normal user

-- Popul ate the table
I NSERT | NTO passwd VALUES
("admn','xxx',0,0," Admn',"'111-222-3333"' ,null,"'/root',"'/bin/
dash');
I NSERT | NTO passwd VALUES
("bob',"xxx"',1,1,"'Bob',"' 123-456-7890', null,"'/hone/bob',"/bin/
zsh');
| NSERT | NTO passwd VALUES
("alice',"xxx',2,1,"Alice',"'098-765-4321" ,null,'/hone/alice',"'/
bi n/ zsh');

-- Be sure to enable row |l evel security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;

-- Create policies
-- Adm nistrator can see all rows and add any rows
CREATE PCLI CY admin_all ON passwd TO admin USING (true) WTH CHECK
(true);
-- Normal users can view all rows
CREATE POLI CY al |l _vi ew ON passwd FOR SELECT USI NG (true);
-- Normal users can update their own records, but
-- limt which shells a nornal user is allowed to set
CREATE PCLI CY user _nmod ON passwd FOR UPDATE
USI NG (current _user = user_nane)

84

Data Definition

W TH CHECK (
current _user = user_nanme AND
shell IN ('/bin/bash',"/bin/sh','/bin/dash','/bin/zsh',"'/bin/
tcsh')

)

-- Allow admin all normal rights
GRANT SELECT, | NSERT, UPDATE, DELETE ON passwd TO admi n;
-- Users only get select access on public col ums
GRANT SELECT
(user_name, uid, gid, real_name, honme_phone, extra_info,
hone_dir, shell)
ON passwd TO public;
-- Allow users to update certain col ums
GRANT UPDATE
(pwhash, real name, home_phone, extra_info, shell)
ON passwd TO public;

Aswith any security settings, it'simportant to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

-- admin can view all rows and fields
post gres=> set role admn;

SET
post gres=> t abl e passwd;
user_nane | pwhash | uid | gid | real _name | home_phone
extra_info | home_dir | shel
----------- T T T I ppup R
o m e o - - o m e e e oo - T ——
adm n | xxx | 0 | 0| Admin | 111-222-3333
| /root | /bin/dash
bob | xxx | 1] 1| Bob | 123-456-7890
| /hone/ bob | /bin/zsh
alice | xxx | 2| 1| Aice | 098-765-4321
| /hone/alice | /bin/zsh
(3 rows)

-- Test what Alice is able to do

postgres=> set role alice;

SET

post gres=> t abl e passwd;

ERROR: permi ssion denied for table passwd

post gres=> sel ect
user _nane, real _name, home_phone, extra_i nfo, hone_dir, shell from
passwd;
user_nane | real _name | honme_phone | extra_info | hone_dir |
shel |

adm n | Admin | 111-222-3333 | | /root

| /bin/dash

bob | Bob | 123-456-7890 | | /hone/ bob

| /bin/zsh

alice | Alice | 098-765-4321 | | /hone/alice
| /bin/zsh
(3 rows)

85

Data Definition

post gr es=> update passwd set user_nane = 'joe';
ERROR: permi ssion denied for table passwd

-- Alice is allowed to change her own real nanme, but no others

post gr es=> update passwd set real _nane = 'Alice Doe';

UPDATE 1

post gr es=> update passwd set real _nane = 'John Doe' where user_nane
= "admn';

UPDATE 0

post gr es=> update passwd set shell = '/bin/xx";

ERROR: new row vi ol ates WTH CHECK OPTION for "passwd”
post gres=> del ete from passwd;

ERROR: permi ssion denied for table passwd

postgres=> insert into passwd (user_nane) values ('xxx');
ERROR: permi ssion denied for table passwd

-- Alice can change her own password; RLS silently prevents
updati ng ot her rows

post gr es=> update passwd set pwhash = 'abc’;
UPDATE 1

All of the policies constructed thus far have been permissive policies, meaning that when multiple
policies are applied they are combined using the “OR” Boolean operator. While permissive policies
can be constructed to only allow access to rows in the intended cases, it can be simpler to combine
permissive policies with restrictive policies (which the records must pass and which are combined
using the “AND” Boolean operator). Building on the example above, we add a restrictive policy to
require the administrator to be connected over alocal Unix socket to accesstherecords of the passwd
table:

CREATE PCLI CY admin_Il ocal _only ON passwd AS RESTRI CTI VE TO admi n
USI NG (pg_catal og.inet_client_addr() 1S NULL);

We can then see that an administrator connecting over a network will not see any records, due to the
restrictive policy:

=> SELECT current _user;
current _user

=> sel ect inet_client_addr();
i net_client_addr

127.0.0.1
(1 row)

=> TABLE passwd;
user_nane | pwhash | uid | gid | real _name | home_phone |
extra_info | honme_dir | shell

=> UPDATE passwd set pwhash = NULL;
UPDATE 0

Referential integrity checks, such as unique or primary key constraints and foreign key references,
always bypass row security to ensure that data integrity is maintained. Care must be taken when

86

Data Definition

developing schemas and row level policies to avoid “covert channel” leaks of information through
such referential integrity checks.

In some contexts it isimportant to be sure that row security is not being applied. For example, when
taking a backup, it could be disastrous if row security silently caused some rows to be omitted from
the backup. In such a situation, you can set the row_security configuration parameter to of f . This
does not in itself bypass row security; what it does is throw an error if any query's results would get
filtered by a policy. The reason for the error can then be investigated and fixed.

Inthe exampl es above, the policy expressionsconsider only the current valuesin therow to be accessed
or updated. This is the simplest and best-performing case; when possible, it's best to design row
security applications to work thisway. If it is necessary to consult other rows or other tables to make
apolicy decision, that can be accomplished using sub-SELECTS, or functionsthat contain SELECTS,
in the policy expressions. Be aware however that such accesses can create race conditions that could
allow information leakage if careis not taken. As an example, consider the following table design:

-- definition of privilege groups
CREATE TABLE groups (group_id int PRI MARY KEY,
group_nane text NOT NULL);

I NSERT | NTO groups VALUES

(1, "low),
(2, 'nmediunm),
(5, "high);
GRANT ALL ON groups TO alice; -- alice is the adninistrator

GRANT SELECT ON groups TO public;

-- definition of users' privilege |levels
CREATE TABLE users (user_nane text PRI MARY KEY,
group_id int NOT NULL REFERENCES groups);

I NSERT | NTO users VALUES
("alice', 5),
(' bob', 2),
(‘mallory', 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

-- table holding the information to be protected
CREATE TABLE i nformation (info text,
group_id int NOT NULL REFERENCES groups);

I NSERT | NTO i nformati on VALUES
('barely secret', 1),
("slightly secret', 2),
('very secret', 5);

ALTER TABLE i nfornati on ENABLE ROW LEVEL SECURI TY;

-- a row shoul d be visible to/updatable by users whose security
group_id is
-- greater than or equal to the row s group_id
CREATE POLICY fp_s ON information FOR SELECT
USI NG (group_id <= (SELECT group_id FROM users WHERE user_nane =
current _user));
CREATE POLICY fp_u ON information FOR UPDATE

87

Data Definition

USI NG (group_id <= (SELECT group_id FROM users WHERE user_nane =
current _user));

-- we rely only on RLS to protect the information table
GRANT ALL ON i nformation TO public;

Now suppose that al i ce wishes to change the “dlightly secret” information, but decides that
mal | ory should not be trusted with the new content of that row, so she does:

BEG N,

UPDATE users SET group_id =

UPDATE i nformati on SET info
= 2:

COW T;

1 WHERE user_nane = "mallory';
= 'secret fromnmallory' WHERE group_id

That looks safe; thereisno window whereinmal | or y should be ableto seethe* secret from mallory”
string. However, there is arace condition here. If mal | or y is concurrently doing, say,

SELECT * FROM i nformati on WHERE group_id = 2 FOR UPDATE;

and her transactionisin READ COVM TTED mode, it ispossible for her to see “ secret from mallory”.
That happens if her transaction reaches the i nf or mat i on row just after al i ce's does. It blocks
waiting for al i ce's transaction to commit, then fetches the updated row contents thanks to the
FOR UPDATE clause. However, it does not fetch an updated row for the implicit SELECT from
user s, because that sub-SELECT did not have FOR UPDATE; instead the user s row isread with
the snapshot taken at the start of the query. Therefore, the policy expression tests the old value of
mal | or y'sprivilege level and allows her to see the updated row.

Thereare severa ways around this problem. Onesimpleanswer istouse SELECT ... FOR SHARE
in sub-SELECTSs in row security policies. However, that requires granting UPDATE privilege on the
referenced table (here user s) to the affected users, which might be undesirable. (But another row
security policy could be applied to prevent them from actually exercising that privilege; or the sub-
SELECT could be embedded into asecurity definer function.) Also, heavy concurrent use of row share
lockson thereferenced table could pose aperformance problem, especialy if updates of it arefrequent.
Another solution, practical if updates of the referenced table are infrequent, is to take an ACCESS
EXCLUSI VE lock onthereferenced table when updating it, so that no concurrent transactions could be
examining old row values. Or one could just wait for all concurrent transactionsto end after committing
an update of the referenced table and before making changes that rely on the new security situation.

For additional details see CREATE POLICY and ALTER TABLE.

5.10. Schemas

A PostgreSQL database cluster contains one or more named databases. Roles and a few other object
types are shared across the entire cluster. A client connection to the server can only access datain a
single database, the one specified in the connection request.

Note

Users of acluster do not necessarily have the privilege to access every databasein the cluster.
Sharing of role names means that there cannot be different roles named, say, j oe in two
databases in the same cluster; but the system can be configured to allow j oe access to only
some of the databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. Within one schema, two

88

Data Definition

objects of the same type cannot have the same name. Furthermore, tables, sequences, indexes, views,
materialized views, and foreign tables share the same namespace, so that, for example, anindex and a
table must have different names if they are in the same schema. The same object name can be used in
different schemas without conflict; for example, both schemal and myschema can contain tables
named nyt abl e. Unlike databases, schemas are not rigidly separated: a user can access objectsin
any of the schemas in the database they are connected to, if they have privileges to do so.

There are several reasons why one might want to use schemas:
» Toalow many users to use one database without interfering with each other.
» To organize database objectsinto logical groups to make them more manageable.

» Third-party applications can be put into separate schemas so they do not collide with the names
of other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

5.10.1. Creating a Schema
To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice.

For example:

CREATE SCHEMA nyschens;

To create or access objects in a schema, write a qualified name consisting of the schema name and
table name separated by adot:

schema. tabl e

This works anywhere a table name is expected, including the table modification commands and the
data access commands discussed in the following chapters. (For brevity we will speak of tables only,
but the same ideas apply to other kinds of named objects, such as types and functions.)

Actualy, the even more general syntax

dat abase. schenn. t abl e

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you
write a database name, it must be the same as the database you are connected to.

So to create atable in the new schema, use:

CREATE TABLE nyschema. nytabl e (
)

To drop aschemaif it'sempty (all objectsin it have been dropped), use:

DROP SCHENMA nyschens;

To drop a schemaincluding all contained objects, use:

DROP SCHEMA nyschena CASCADE;

See Section 5.15 for a description of the general mechanism behind this,

89

Data Definition

Often you will want to create a schema owned by someone el se (since thisis one of the waysto restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schenma_nane AUTHORI ZATI ON user _nane;

Y ou can even omit the schema name, in which case the schema name will be the same as the user
name. See Section 5.10.6 for how this can be useful.

Schema names beginning with pg__ are reserved for system purposes and cannot be created by users.

5.10.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default such
tables (and other objects) are automatically put into a schema named “public’. Every new database
contains such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:
CREATE TABLE public. products (...);

5.10.3. The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of
just the table name. The system determines which table is meant by following a search path, whichis
alist of schemasto look in. The first matching table in the search path is taken to be the one wanted.
If thereisno match in the search path, an error isreported, even if matching table names exist in other
schemas in the database.

The ability to create like-named objects in different schemas complicates writing a query that
references precisely the same objects every time. It also opens up the potential for users to change
the behavior of other users' queries, maliciously or accidentally. Due to the prevaence of unqualified
names in queries and their use in PostgreSQL internals, adding a schema to sear ch_pat h
effectively trusts all users having CREATE privilege on that schema. When you run an ordinary query,
amalicious user able to create objects in a schema of your search path can take control and execute
arbitrary SQL functions as though you executed them.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is aso the schema in which new tables will be created if the CREATE TABLE
command does not specify a schema name.

To show the current search path, use the following command:

SHOW sear ch_pat h;

In the default setup this returns:

search_path

"$user", public

The first element specifies that a schema with the same name as the current user is to be searched.
If no such schema exists, the entry is ignored. The second element refers to the public schema that
we have seen already.

90

Data Definition

The first schema in the search path that exists is the default location for creating new objects. That
is the reason that by default objects are created in the public schema. When objects are referenced
in any other context without schema qualification (table modification, data modification, or query
commands) the search path is traversed until a matching object is found. Therefore, in the default
configuration, any unqualified access again can only refer to the public schema.

To put our new schemain the path, we use:

SET search_path TO nyschens, publi c;

(We omit the $user here because we have no immediate need for it.) And then we can access the
table without schema qualification:

DROP TABLE nyt abl e;
Also, since nyschena isthefirst element in the path, new objects would by default be created in it.

We could also have written:

SET search_path TO nyschens;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.27 for other ways to manipul ate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way astable
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR(schenm. oper at or)

Thisis needed to avoid syntactic ambiguity. An exampleis:

SELECT 3 OPERATOR(pg_catal og. +) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly asthat.

5.10.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To alow that, the owner of
the schema must grant the USACE privilege on the schema. By default, everyone has that privilege
on the schemapubl i c. To alow usersto make use of the objectsin a schema, additional privileges
might need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else's schema. To alow that, the CREATE
privilege on the schema needs to be granted. In databases upgraded from PostgreSQL 14 or earlier,
everyone has that privilege on the schema publ i c. Some usage patterns call for revoking that

privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLI C,

(Thefirst “public” is the schema, the second “public” means “every user”. In the first senseit isan
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

91

Data Definition

5.10.5. The System Catalog Schema

In addition to publ i c and user-created schemas, each database contains a pg_cat al og
schema, which contains the system tables and all the built-in data types, functions, and operators.
pg_cat al og is aways effectively part of the search path. If it is not named explicitly in the path
thenitisimplicitly searched before searching the path’'s schemas. This ensures that built-in names will
aways be findable. However, you can explicitly place pg_cat al og at the end of your search path
if you prefer to have user-defined names override built-in names.

Since system table names beginwithpg_, it isbest to avoid such namesto ensure that you won't suffer
aconflict if some future version defines a system table named the same asyour table. (With the default
search path, an unqualified reference to your table name would then be resolved as the system table
instead.) System tables will continue to follow the convention of having names beginning with pg_,
so that they will not conflict with unqualified user-table names so long as users avoid the pg__ prefix.

5.10.6. Usage Patterns

Schemas can be used to organize your data in many ways. A secure schema usage pattern prevents
untrusted users from changing the behavior of other users' queries. When a database does not use
a secure schema usage pattern, users wishing to securely query that database would take protective
action at the beginning of each session. Specificaly, they would begin each session by setting
sear ch_pat h to the empty string or otherwise removing schemas that are writable by non-
superusers from sear ch_pat h. There are a few usage patterns easily supported by the default
configuration:

» Constrain ordinary users to user-private schemas. To implement this pattern, first ensure that no
schemas have public CREATE privileges. Then, for every user needing to create non-temporary
objects, create a schema with the same name as that user, for example CREATE SCHEMA al i ce
AUTHORI ZATI ON al i ce. (Recall that the default search path startswith $user , which resolves
to the user name. Therefore, if each user has a separate schema, they access their own schemas
by default.) This pattern is a secure schema usage pattern unless an untrusted user is the database
owner or has been granted ADM N OPTI ON on arelevant role, in which case no secure schema
usage pattern exists.

In PostgreSQL 15 and later, the default configuration supports this usage pattern. In prior versions,
or when using a database that has been upgraded from a prior version, you will need to remove
the public CREATE privilege from the publ i ¢ schema (issue REVOKE CREATE ON SCHEMA
publ i ¢ FROM PUBLI C). Then consider auditing the publ i ¢ schema for objects named like
objectsin schemapg_cat al og.

» Removethe public schemafrom the default search path, by modifying post gr esql . conf or by
issuing ALTER ROLE ALL SET search_path = "$user". Then, grant privilegesto create
inthe public schema. Only qualified nameswill choose public schemaobjects. While qualified table
references arefine, callsto functionsin the public schemawill be unsafe or unreliable. If you creste
functions or extensions in the public schema, use the first pattern instead. Otherwise, like the first
pattern, this is secure unless an untrusted user is the database owner or has been granted ADM N
OPTI ONon arelevant role.

» Keepthedefault search path, and grant privilegesto createin the public schema. All usersaccessthe
public schemaimplicitly. This simulates the situation where schemas are not available at all, giving
asmooth transition from the non-schema-aware world. However, thisis never a secure pattern. Itis
acceptable only when the database has a single user or afew mutually-trusting users. In databases
upgraded from PostgreSQL 14 or earlier, thisis the default.

For any pattern, to install shared applications (tables to be used by everyone, additional functions
provided by third parties, etc.), put them into separate schemas. Remember to grant appropriate
privileges to alow the other users to access them. Users can then refer to these additional objects by
qualifying the names with a schema name, or they can put the additional schemas into their search
path, as they choose.

92

Data Definition

5.10.7. Portability

5.11

In the SQL standard, the notion of objects in the same schema being owned by different users does
not exist. Moreover, some implementations do not allow you to create schemas that have a different
name than their owner. In fact, the concepts of schema and user are nearly equivalent in a database
system that implements only the basi c schema support specified in the standard. Therefore, many users
consider qualified namesto really consist of user _name. t abl e_nane. Thisis how PostgreSQL
will effectively behave if you create a per-user schemafor every user.

Also, there is no concept of apubl i ¢ schemain the SQL standard. For maximum conformance to
the standard, you should not use the publ i ¢ schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers.
(SQL:1999 and later define atypeinheritancefeature, which differsin many respectsfrom thefeatures
described here.)

Let's start with an example: suppose we aretrying to build adatamodel for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular
state. This can be done by creating two tables, one for state capitals and one for cities that are not
capitals. However, what happens when we want to ask for data about acity, regardless of whether itis
acapital or not? The inheritance feature can help to resolve this problem. We definethecapi t al s
table so that it inheritsfromci ti es:

CREATE TABLE cities (

name t ext,
popul ati on fl oat,
el evati on i nt -- in feet

)

CREATE TABLE capitals (
state char (2)
) INHERI TS (cities);

Inthis case, the capi t al s tableinheritsall the columns of its parent table, ci t i es. State capitals
also have an extracolumn, st at e, that showstheir state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either
all rows of atable or all rows of atable plus all of its descendant tables. The latter behavior is the
default. For example, the following query finds the names of al cities, including state capitals, that
arelocated at an elevation over 500 feet:

SELECT nane, el evation
FROM ci ti es
VWHERE el evati on > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

93

Data Definition

Mari posa | 1953
Madi son | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an elevation over 500 feet:

SELECT nane, el evation
FROM ONLY cities
VWHERE el evati on > 500;

nane | elevation
___________ N,
Las Vegas | 2174
Mari posa | 1953

Here the ONLY keyword indicates that the query should apply only to ci ti es, and not any tables
below ci ti es in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE and DELETE — support the ONLY keyword.

You can also write the table name with a trailing * to explicitly specify that descendant tables are
included:

SELECT nane, el evation
FROM ci ti es*
VWHERE el evati on > 500;

Writing * is not necessary, since this behavior is always the default. However, this syntax is till
supported for compatibility with older releases where the default could be changed.

In some cases you might wish to know which table aparticular row originated from. Thereisasystem
column called t abl eoi d in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.elevation
FROM cities c
VWHERE c. el evati on > 500;

which returns;

tabl eoid | name | elevation
__________ e
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madi son | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing ajoin
with pg_cl ass you can see the actual table names:

SELECT p.relnane, c.nanme, c.elevation
FROM cities ¢, pg_class p
WHERE c. el evati on > 500 AND c.tabl eoid = p.oid;

which returns;

cities | Las Vegas | 2174

Data Definition

cities | Mariposa | 1953
capitals | Madison | 845

Another way to get the same effect isto usether egcl ass aiastype, which will print the table OID
symbolicaly:

SELECT c.tabl eoi d: :regcl ass, c.nane, c.elevation
FROM cities c
WHERE c. el evati on > 500;

Inheritance does not automatically propagate data from | NSERT or COPY commands to other tables
in the inheritance hierarchy. In our example, the following | NSERT statement will fail:

I NSERT I NTO cities (name, popul ation, elevation, state)
VALUES (' Al bany', NULL, NULL, 'NY');

We might hope that the data would somehow be routed to the capi t al s table, but this does not
happen: | NSERT alwaysinsertsinto exactly the table specified. In some casesit is possibleto redirect
the insertion using a rule (see Chapter 39). However that does not help for the above case because
theci ti es table does not contain the column st at e, and so the command will be rejected before
the rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its
children, unless explicitly specified otherwise with NO | NHERI T clauses. Other types of constraints
(unique, primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns
defined by the parent tables. Any columns declared in the child table's definition are added to these.
If the same column name appears in multiple parent tables, or in both a parent table and the child's
definition, then these columnsare“ merged” so that thereisonly one such columninthechild table. To
be merged, columns must have the same datatypes, elsean error israised. I nheritable check constraints
and not-null constraints are merged in asimilar fashion. Thus, for example, amerged column will be
marked not-null if any one of the column definitionsit camefrom ismarked not-null. Check constraints
are merged if they have the same name, and the merge will fail if their conditions are different.

Tableinheritanceistypically established when the child table is created, using the | NHERI TS clause
of the CREATE TABLE statement. Alternatively, atable which isaready defined in acompatible way
can have anew parent relationship added, using the | NHERI T variant of ALTER TABLE. To do this
the new child table must aready include columns with the same names and types as the columns of the
parent. It must aso include check constraints with the same names and check expressions as those of
the parent. Similarly an inheritance link can be removed from achild using the NO | NHERI T variant
of ALTER TABLE. Dynamically adding and removing inheritance links like this can be useful when
the inheritance relationship is being used for table partitioning (see Section 5.12).

One convenient way to create a compatible table that will later be made a new child is to use the
LI KE clausein CREATE TABLE. Thiscreatesanew table with the same columns as the source table.
If there are any CHECK constraints defined on the source table, the | NCLUDI NG CONSTRAI NTS
option to LI KE should be specified, as the new child must have constraints matching the parent to
be considered compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check
constraints of child tables be dropped or altered if they are inherited from any parent tables. If you
wish to remove a table and all of its descendants, one easy way is to drop the parent table with the
CASCADE option (see Section 5.15).

ALTER TABLE will propagate any changesin column data definitions and check constraintsdown the
inheritance hierarchy. Again, dropping columns that are depended on by other tablesis only possible
when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column
merging and rejection that apply during CREATE TABLE.

95

Data Definition

Inherited queries perform access permission checks on the parent table only. Thus, for example,
granting UPDATE permission on the citi es table implies permission to update rows in the
capi t al s table as well, when they are accessed through ci ti es. This preserves the appearance
that the data is (also) in the parent table. But the capi t al s table could not be updated directly
without an additional grant. In asimilar way, the parent table's row security policies (see Section 5.9)
are applied to rows coming from child tables during an inherited query. A child table's policies, if
any, are applied only when it is the table explicitly named in the query; and in that case, any policies
attached to its parent(s) are ignored.

Foreign tables (see Section 5.13) can also be part of inheritance hierarchies, either as parent or child
tables, just as regular tables can be. If aforeign table is part of an inheritance hierarchy then any
operations not supported by the foreign table are not supported on the whole hierarchy either.

5.11.1. Caveats

5.12.

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are used
for dataquerying, datamodification, or schemamaodification (e.g., SELECT, UPDATE, DELETE, most
variants of ALTER TABLE, but not | NSERT or ALTER TABLE ... RENAME) typicaly default
to including child tables and support the ONLY notation to exclude them. The majority of commands
that do database maintenance and tuning (e.g., REI NDEX) only work on individual, physical tables
and do not support recursing over inheritance hierarchies. However, both VACUUM and ANALYZE
commands default to including child tables and the ONLY notation is supported to alow them to be
excluded. The respective behavior of each individua command is documented in its reference page
(SQL Commands).

A seriouslimitation of theinheritance featureisthat indexes (including unique constraints) and foreign
key constraints only apply to single tables, not to their inheritance children. Thisis true on both the
referencing and referenced sides of aforeign key constraint. Thus, in the terms of the above example:

» If we declared ci ti es.nane to be UNI QUE or a PRI MARY KEY, this would not stop the
capi t al s table from having rows with names duplicating rowsin ci t i es. And those duplicate
rowswould by default show upinqueriesfromci t i es. Infact, by default capi t al s would have
no unique constraint at all, and so could contain multiple rows with the same name. Y ou could add
aunigue constraint to capi t al s, but thiswould not prevent duplication comparedtoci ti es.

» Similarly, if wewereto specify that ci t i es.name REFERENCES some other table, thisconstraint
would not automatically propagatetocapi t al s. Inthiscaseyou couldwork around it by manually
adding the same REFERENCES constraint to capi t al s.

 Specifying that another table's column REFERENCES ci ti es(nane) would alow the other
table to contain city names, but not capital names. There is no good workaround for this case.

Some functionality not implemented for inheritance hierarchies is implemented for declarative

partitioning. Considerable care is needed in deciding whether partitioning with legacy inheritance is
useful for your application.

Table Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement
partitioning as part of your database design.

5.12.1. Overview

Partitioning refersto splitting what islogically onelargetableinto smaller physical pieces. Partitioning
can provide several benefits:

* Query performance can be improved dramatically in certain situations, particularly when most of
the heavily accessed rows of the table are in a single partition or a small number of partitions.

96

Data Definition

Partitioning effectively substitutes for the upper tree levels of indexes, making it more likely that
the heavily-used parts of the indexes fit in memory.

» When queries or updates access a large percentage of a single partition, performance can be
improved by using asequential scan of that partition instead of using an index, which would require
random-access reads scattered across the whole table.

 Bulk loads and deletes can be accomplished by adding or removing partitions, if the usage patternis
accounted for in the partitioning design. Dropping an individual partition using DROP TABLE, or
doing ALTER TABLE DETACH PARTI TI QN, isfar faster than abulk operation. These commands
also entirely avoid the VACUUMoverhead caused by abulk DELETE.

» Seldom-used data can be migrated to cheaper and slower storage media.

These benefits will normally be worthwhile only when a table would otherwise be very large. The
exact point at which atable will benefit from partitioning depends on the application, although arule
of thumb is that the size of the table should exceed the physical memory of the database server.

PostgreSQL offers built-in support for the following forms of partitioning:
Range Partitioning

Thetableispartitioned into “ranges’ defined by akey column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example, one might partition by
date ranges, or by ranges of identifiers for particular business objects. Each range's bounds are
understood as being inclusive at the lower end and exclusive at the upper end. For example, if
one partition's range is from 1 to 10, and the next one's range is from 10 to 20, then value 10
belongs to the second partition not the first.

List Partitioning
The table is partitioned by explicitly listing which key value(s) appear in each partition.
Hash Partitioning

Thetableis partitioned by specifying amodulus and aremainder for each partition. Each partition
will hold the rows for which the hash value of the partition key divided by the specified modulus
will produce the specified remainder.

If your application needs to use other forms of partitioning not listed above, alternative methods such
asinheritance and UNI ON ALL views can be used instead. Such methods offer flexibility but do not
have some of the performance benefits of built-in declarative partitioning.

5.12.2. Declarative Partitioning

PostgreSQL allows you to declare that a table is divided into partitions. The table that is divided is
referred to as apartitioned table. The declaration includes the partitioning method as described above,
plus alist of columns or expressions to be used as the partition key.

Thepartitioned tableitself isa“virtual” table having no storage of itsown. Instead, the storage belongs
to partitions, which are otherwise-ordinary tables associated with the partitioned table. Each partition
stores a subset of the data as defined by its partition bounds. All rowsinserted into a partitioned table
will berouted to the appropriate one of the partitions based on the values of the partition key column(s).
Updating the partition key of arow will cause it to be moved into a different partition if it no longer
satisfies the partition bounds of its original partition.

Partitions may themselves be defined as partitioned tables, resulting in sub-partitioning. Although
all partitions must have the same columns as their partitioned parent, partitions may have their own
indexes, constraints and default values, distinct from those of other partitions. See CREATE TABLE
for more details on creating partitioned tables and partitions.

97

Data Definition

Itisnot possibleto turn aregular tableinto a partitioned table or vice versa. However, itis possible to
add an existing regular or partitioned table as a partition of a partitioned table, or remove a partition
from a partitioned table turning it into a standalone table; this can simplify and speed up many
maintenance processes. See ALTER TABLE to learn more about the ATTACH PARTI Tl ON and
DETACH PARTI Tl ON sub-commands.

Partitions can also be foreign tables, although considerable care is needed because it is then the user's

responsibility that the contents of the foreign table satisfy the partitioning rule. There are some other
restrictions aswell. See CREATE FOREIGN TABLE for more information.

5.12.2.1. Example

Suppose we are constructing a database for alarge ice cream company. The company measures peak
temperatures every day as well asice cream salesin each region. Conceptually, we want atable like:

CREATE TABLE neasurenent (

city id int not null,
| ogdat e date not null,
peakt enp int,

uni t sal es i nt

)

We know that most queries will access just the last week's, month's or quarter's data, since the main
use of thistable will be to prepare online reports for management. To reduce the amount of old data
that needs to be stored, we decide to keep only the most recent 3 yearsworth of data. At the beginning
of each month we will remove the oldest month's data. In this situation we can use partitioning to help
us meet al of our different requirements for the measurementstable.

To use declarative partitioning in this case, use the following steps:

1. Createthermeasur enent table asapartitioned table by specifying the PARTI TI ON BY clause,
which includes the partitioning method (RANCE in this case) and the list of column(s) to use as
the partition key.

CREATE TABLE neasurenent (

city id int not null,
| ogdat e date not null,
peakt enp int,

uni t sal es i nt

) PARTI TI ON BY RANCE (| ogdat e);

2. Createpartitions. Each partition'sdefinition must specify boundsthat correspond to the partitioning
method and partition key of the parent. Note that specifying bounds such that the new partition's
values would overlap with those in one or more existing partitions will cause an error.

Partitions thus created are in every way normal PostgreSQL tables (or, possibly, foreign tables).
It is possible to specify atablespace and storage parameters for each partition separately.

For our example, each partition should hold one month's worth of data, to match the requirement
of deleting one month's data at atime. So the commands might look like:

CREATE TABLE neasur enent _y2006n02 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2006-02-01') TO ('2006-03-01");

CREATE TABLE neasur enent _y2006n03 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2006-03-01') TO (' 2006-04-01");

98

Data Definition

CREATE TABLE nmeasurenent _y2007mll PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2007-11-01') TO ('2007-12-01");

CREATE TABLE nmeasurenent _y2007nml2 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2007-12-01') TO ('2008-01-01")
TABLESPACE f astt abl espace;

CREATE TABLE neasur enment _y2008n01 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2008-01-01') TO ('2008-02-01")
W TH (paral |l el _workers = 4)
TABLESPACE f astt abl espace;

(Recall that adjacent partitions can share a bound value, since range upper bounds are treated as
exclusive bounds.)

If you wish to implement sub-partitioning, again specify the PARTI TI ON BY clause in the
commands used to create individual partitions, for example:

CREATE TABLE neasurenent _y2006n02 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2006-02-01') TO ('2006-03-01")
PARTI TI ON BY RANGE (peaktenp);

After creating partitions of neasur emrent _y2006n02, any datainserted into measur enent

that is mapped to neasurenent y2006n02 (or data that is directly inserted into
measur enment _y2006n02, which is allowed provided its partition constraint is satisfied) will
be further redirected to one of its partitions based on the peakt enp column. The partition
key specified may overlap with the parent's partition key, although care should be taken when
specifying the bounds of a sub-partition such that the set of data it accepts constitutes a subset
of what the partition's own bounds allow; the system does not try to check whether that's really
the case.

Inserting data into the parent table that does not map to one of the existing partitions will cause an
error; an appropriate partition must be added manually.

Itisnot necessary to manually create table constraints describing the partition boundary conditions
for partitions. Such constraints will be created automatically.

3. Create an index on the key column(s), as well as any other indexes you might want, on the
partitioned table. (The key index is not strictly necessary, but in most scenariosit is helpful.) This
automatically creates a matching index on each partition, and any partitions you create or attach
later will also have such an index. An index or unique constraint declared on a partitioned table
is“virtual” in the same way that the partitioned table is. the actual dataisin child indexes on the
individual partition tables.

CREATE | NDEX ON neasur enent (| ogdate);
4. Ensure that the enable partition_pruning configuration parameter is not disabled in
post gresqgl . conf . If itis, querieswill not be optimized as desired.

In the above example we would be creating a new partition each month, so it might be wise to write
a script that generates the required DDL automatically.

5.12.2.2. Partition Maintenance

Normally the set of partitions established when initially defining the table is not intended to remain
static. It iscommon to want to remove partitions holding old data and periodically add new partitions
for new data. One of the most important advantages of partitioning is precisely that it alows this
otherwise painful task to be executed nearly instantaneously by manipulating the partition structure,
rather than physically moving large amounts of data around.

99

Data Definition

The simplest option for removing old datais to drop the partition that is no longer necessary:

DROP TABLE neasurenent _y2006n02;

This can very quickly delete millions of records because it doesn't have to individually delete every
record. Note however that the above command requires taking an ACCESS EXCLUSI VE lock on
the parent table.

Another option that is often preferable is to remove the partition from the partitioned table but retain
accessto it asatableinits own right. This hastwo forms:

ALTER TABLE neasur enent DETACH PARTI TI ON nmeasur enent _y2006nD2;
ALTER TABLE neasur enment DETACH PARTI TI ON nmeasur ement _y2006n02
CONCURRENTLY;

These allow further operations to be performed on the data before it is dropped. For example, thisis
often auseful timeto back up the datausing COPY, pg_dump, or similar tools. It might also be auseful
time to aggregate data into smaller formats, perform other data manipulations, or run reports. The
first form of the command requires an ACCESS EXCLUSI VE lock on the parent table. Adding the
CONCURRENTLY qualifier asin the second form allows the detach operation to require only SHARE
UPDATE EXCLUSI VElock ontheparent table, but see ALTER TABLE . .. DETACH PARTI TI ON
for details on the restrictions.

Similarly we can add a new partition to handle new data. We can create an empty partition in the
partitioned table just as the original partitions were created above:

CREATE TABLE neasur enent _y2008n02 PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2008-02-01') TO ('2008-03-01")
TABLESPACE f astt abl espace;

As an dternative to creating a new partition, it is sometimes more convenient to create a new table
separate from the partition structure and attach it as a partition later. This allows new data to be
loaded, checked, and transformed prior to it appearing in the partitioned table. Moreover, the ATTACH
PARTI TI ON operation requires only a SHARE UPDATE EXCLUSI VE lock on the partitioned table

rather than the ACCESS EXCLUSI VE lock required by CREATE TABLE ... PARTI TI ON OF,
so it is more friendly to concurrent operations on the partitioned table; see ALTER TABLE . ..
ATTACH PARTI TI ON for additiona details. The CREATE TABLE ... LI KE option can be

helpful to avoid tediously repeating the parent table's definition; for example:

CREATE TABLE neasur enment _y2008n02
(LI KE measur erment | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS)
TABLESPACE f astt abl espace;

ALTER TABLE neasur enment _y2008nD2 ADD CONSTRAI NT y2008nD2
CHECK (| ogdate >= DATE ' 2008-02- 01" AND | ogdate < DATE
' 2008-03-01");

\ copy neasurenent _y2008n02 from ' measurenment _y2008nD2'
-- possibly sonme other data preparation work

ALTER TABLE nmeasurenment ATTACH PARTI TI ON nmeasur enment _y2008n02
FOR VALUES FROM (' 2008-02-01") TO ('2008-03-01");

Note that when running the ATTACH PARTI TI ON command, the table will be scanned to validate
the partition constraint while holding an ACCESS EXCLUSI VE lock on that partition. As shown
above, it is recommended to avoid this scan by creating a CHECK constraint matching the expected

100

Data Definition

partition constraint on the table prior to attaching it. Once the ATTACH PARTI Tl ONiscomplete, it
is recommended to drop the now-redundant CHECK constraint. If the table being attached isitself a
partitioned table, then each of its sub-partitions will be recursively locked and scanned until either a
suitable CHECK constraint is encountered or the leaf partitions are reached.

Similarly, if the partitioned table has a DEFAULT partition, it is recommended to create a CHECK
constraint which excludes the to-be-attached partition's constraint. If this is not done, the DEFAULT
partition will be scanned to verify that it contains no records which should be located in the partition
being attached. Thisoperation will be performed whilst holding an ACCESS EXCLUSI VE lock onthe
DEFAULT partition. If the DEFAULT partition is itself a partitioned table, then each of its partitions
will be recursively checked in the same way as the table being attached, as mentioned above.

As mentioned earlier, it is possible to create indexes on partitioned tables so that they are applied
automatically to theentire hierarchy. Thiscan bevery convenient asnot only will all existing partitions
be indexed, but any future partitions will be as well. However, one limitation when creating new
indexeson partitioned tablesisthat it isnot possible to usethe CONCURRENTLY qualifier, which could
lead to long lock times. To avoid this, you can use CREATE | NDEX ON ONLY the partitioned table,
which createsthe new index marked asinvalid, preventing automatic application to existing partitions.
Instead, indexes can then be created individually on each partition using CONCURRENTLY and
attached to the partitioned index on the parent using ALTER | NDEX ... ATTACH PARTI TI ON.
Once indexes for al the partitions are attached to the parent index, the parent index will be marked
valid automatically. Example:

CREATE | NDEX neasur enent _usls_idx ON ONLY neasurenent (unitsales);

CREATE | NDEX CONCURRENTLY neasur enent _usl s 200602 _i dx
ON neasur enment _y2006n02 (unitsal es);

ALTER | NDEX neasur enent _usl s_i dx
ATTACH PARTI TI ON neasur enent _usl s_200602_i dx;

Thistechnique can be used with UNI QUE and PRI MARY KEY constraintstoo; theindexes are created
implicitly when the constraint is created. Example:

ALTER TABLE ONLY neasurenment ADD UNIQUE (city_id, |ogdate);

ALTER TABLE neasur enent _y2006nD2 ADD UNI QUE (city_id, |ogdate);
ALTER I NDEX neasurenent _city_id_| ogdat e_key
ATTACH PARTI TI ON neasur enent _y2006n02_city_id_| ogdate_key;

5.12.2.3. Limitations

The following limitations apply to partitioned tables:

» To create a unique or primary key constraint on a partitioned table, the partition keys must not
include any expressions or function calls and the constraint's columns must include al of the
partition key columns. Thislimitation exists becausetheindividual indexes making up the constraint
can only directly enforce uniqueness within their own partitions; therefore, the partition structure
itself must guarantee that there are not duplicatesin different partitions.

» Similarly an exclusion constraint must include all the partition key columns. Furthermore the
constraint must compare those columnsfor equality (not e.g. &&). Again, thislimitation stemsfrom
not being ableto enforce cross-partition restrictions. The constraint may include additional columns
that aren't part of the partition key, and it may compare those with any operators you like.

« BEFORE ROWTtriggers on | NSERT cannot change which partition is the final destination for a
New row.

101

Data Definition

e Mixing temporary and permanent relations in the same partition tree is not allowed. Hence, if
the partitioned table is permanent, so must be its partitions and likewise if the partitioned table is
temporary. When using temporary relations, all members of the partition tree have to be from the
same session.

Individual partitionsarelinked to their partitioned tabl e using inheritance behind-the-scenes. However,
it isnot possible to use al of the generic features of inheritance with declaratively partitioned tables
or their partitions, as discussed below. Notably, a partition cannot have any parents other than the
partitioned table it is a partition of, nor can atable inherit from both a partitioned table and a regular
table. That means partitioned tables and their partitions never share an inheritance hierarchy with
regular tables.

Since a partition hierarchy consisting of the partitioned table and its partitions is still an inheritance
hierarchy, t abl eoi d and all the normal rules of inheritance apply as described in Section 5.11, with
afew exceptions:

* Partitions cannot have columnsthat are not present in the parent. It isnot possibleto specify columns
when creating partitionswith CREATE TABLE, nor isit possible to add columnsto partitions after-
the-fact using ALTER TABLE. Tables may be added as a partition with ALTER TABLE . ..
ATTACH PARTI TI ON only if their columns exactly match the parent.

* Both CHECK and NOT NULL constraints of a partitioned table are always inherited by al its
partitions; it is not allowed to create NO | NHERI T constraints of those types. Y ou cannot drop a
constraint of those types if the same constraint is present in the parent table.

» Using ONLY to add or drop a constraint on only the partitioned table is supported as long as there
are no partitions. Once partitions exist, using ONLY will result in an error for any constraints other
than UNI QUE and PRI MARY KEY. Instead, constraints on the partitions themselves can be added
and (if they are not present in the parent table) dropped.

» As a partitioned table does not have any data itself, attempts to use TRUNCATE ONLY on a
partitioned table will always return an error.

5.12.3. Partitioning Using Inheritance

While the built-in declarative partitioning is suitable for most common use cases, there are some
circumstances where a more flexible approach may be useful. Partitioning can be implemented using
table inheritance, which allowsfor several features not supported by declarative partitioning, such as:

* For declarative partitioning, partitions must have exactly the same set of columns asthe partitioned
table, whereas with table inheritance, child tables may have extra columns not present in the parent.

» Tableinheritance allows for multiple inheritance.

* Declarative partitioning only supports range, list and hash partitioning, whereas table inheritance
alows data to be divided in a manner of the user's choosing. (Note, however, that if constraint
exclusion is unable to prune child tables effectively, query performance might be poor.)

5.12.3.1. Example

This example builds a partitioning structure equivalent to the declarative partitioning example above.
Use the following steps:

1. Create the “root” table, from which all of the “child” tables will inherit. This table will contain
no data. Do not define any check constraints on this table, unless you intend them to be applied
equally to all child tables. There is no point in defining any indexes or unique constraints on it,
either. For our example, the root table isthe neasur enmrent table as originally defined:

CREATE TABLE neasurenent (

102

Data Definition

city_id int not null,
| ogdat e date not null,
peakt enp i nt,

uni t sal es i nt

)

. Create severa “child” tables that each inherit from the root table. Normally, these tables will not
add any columnsto the set inherited from theroot. Just aswith declarative partitioning, these tables
arein every way normal PostgreSQL tables (or foreign tables).

CREATE TABLE neasurenent _y2006n02 () | NHERI TS (neasurenent);
CREATE TABLE neasur enent _y2006n03 () | NHERI TS (neasurenent);

CREATE TABLE neasurenent _y2007nill () | NHERI TS (neasurenent);
CREATE TABLE neasurenent _y2007nl2 () | NHERI TS (neasurenent);
CREATE TABLE neasurenent _y2008n01 () | NHERI TS (neasurenent);

. Add non-overlapping table constraints to the child tables to define the allowed key valuesin each.

Typica exampleswould be:

CHECK (x = 1)

CHECK (county IN ('Oxfordshire', 'Buckinghanshire',
"Warwi ckshire'))

CHECK (outletID >= 100 AND outletlID < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different child tables. A common mistake is to set up range constraints like:

CHECK (outletl D BETVEEN 100 AND 200)
CHECK (outletl D BETVEEN 200 AND 300)

Thisiswrong since it is not clear which child table the key value 200 belongs in. Instead, ranges
should be defined in this style:

CREATE TABLE neasur ement _y2006n02 (

CHECK (| ogdate >= DATE ' 2006-02-01' AND | ogdate < DATE
' 2006- 03-01')
) INHERI TS (measurenent);

CREATE TABLE neasur enent _y2006n03 (

CHECK (| ogdate >= DATE ' 2006-03-01' AND | ogdate < DATE
' 2006- 04-01')
) INHERI TS (measuremnent);

CREATE TABLE neasurenment _y2007nll (
CHECK (|ogdate >= DATE ' 2007-11-01' AND | ogdate < DATE
'2007-12-01")
) INHERI TS (measurenent);

CREATE TABLE neasurenment _y2007nml2 (
CHECK (| ogdate >= DATE '2007-12-01' AND | ogdate < DATE
' 2008-01-01')
) INHERI TS (measuremnent);

CREATE TABLE neasur enment _y2008n01 (

103

Data Definition

CHECK (| ogdate >= DATE ' 2008-01-01' AND | ogdate < DATE
' 2008- 02-01')
) INHERI TS (measurenent);
4. For each child table, create an index on the key column(s), aswell as any other indexes you might
want.

CREATE | NDEX measur enent _y2006n02_| ogdat e
measur enent _y2006n02 (| ogdate);

CREATE | NDEX measur enent _y2006n03_| ogdat e
measur enent _y2006n03 (| ogdate);

CREATE | NDEX measur enent _y2007nll_| ogdat e
measur enent _y2007nmll (| ogdate);

CREATE | NDEX neasur enent _y2007nl2_| ogdate ON
measur enent _y2007nml2 (| ogdate);

CREATE | NDEX neasur enent _y2008n01_| ogdate ON
measur enent _y2008n01 (| ogdate);

5. We want our application to be ableto say | NSERT | NTO neasurenment ... and havethe
data be redirected into the appropriate child table. We can arrange that by attaching a suitable
trigger function to the root table. If data will be added only to the latest child, we can use a very
simple trigger function:;

2 2 2

CREATE OR REPLACE FUNCTI ON neasurenent i nsert _trigger()

RETURNS TRI GGER AS $$

BEG N
I NSERT | NTO neasur enment _y2008n01 VALUES (NEW *);
RETURN NULL;

END;

$$

LANGUAGE pl pgsql ;

After creating the function, we create atrigger which calls the trigger function:

CREATE TRI GGER i nsert_measurenment _trigger
BEFORE | NSERT ON neasur enment
FOR EACH ROW EXECUTE FUNCTI ON rneasur enent _i nsert _trigger();

We must redefine the trigger function each month so that it always inserts into the current child
table. The trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the child table into which
the row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTI ON neasurenent _insert _trigger()
RETURNS TRI GGER AS $$%
BEG N
I F (NEW I ogdate >= DATE ' 2006- 02-01' AND
NEW | ogdat e < DATE ' 2006-03-01') THEN
I NSERT | NTO neasur enment _y2006n02 VALUES (NEW *);
ELSIF (NEW I ogdate >= DATE ' 2006-03-01' AND
NEW | ogdat e < DATE ' 2006-04-01') THEN
I NSERT | NTO neasur enment _y2006n03 VALUES (NEW *);

ELSIF (NEW I ogdate >= DATE ' 2008-01-01' AND
NEW | ogdat e < DATE ' 2008-02-01') THEN
I NSERT | NTO neasur enment _y2008n01 VALUES (NEW *);

104

Data Definition

ELSE
RAI SE EXCEPTION ' Date out of range. Fix the
measur enent _insert _trigger() function!';

END | F;

RETURN NULL;
END,
$$
LANGUAGE pl pgsal ;

Thetrigger definition isthe same as before. Note that each | F test must exactly match the CHECK
constraint for its child table.

While this function is more complex than the single-month case, it doesn't need to be updated as
often, since branches can be added in advance of being needed.

Note

In practice, it might be best to check the newest child first, if most inserts go into that
child. For simplicity, we have shown the trigger's tests in the same order as in other parts
of thisexample.

A different approach to redirecting insertsinto the appropriate child tableisto set up rules, instead
of atrigger, on the root table. For example:

CREATE RULE neasurenent _insert_y2006n02 AS
ON I NSERT TO neasur enent WHERE
(logdate >= DATE ' 2006-02-01' AND | ogdate < DATE
' 2006- 03-01")
DO | NSTEAD
I NSERT | NTO neasur enment _y2006n02 VALUES (NEW *);

CREATE RULE neasurenent _insert_y2008n0D1 AS
ON I NSERT TO neasur enent WHERE
(logdate >= DATE ' 2008-01-01" AND | ogdate < DATE
'2008- 02-01')
DO | NSTEAD
I NSERT | NTO neasur enment _y2008n01 VALUES (NEW *);

A rule has significantly more overhead than a trigger, but the overhead is paid once per query
rather than once per row, so this method might be advantageous for bulk-insert situations. In most
cases, however, the trigger method will offer better performance.

Be aware that COPY ignoresrules. If you want to use COPY to insert data, you'll need to copy into
the correct child table rather than directly into the root. COPY does fire triggers, so you can use
it normally if you use the trigger approach.

Another disadvantage of the rule approach is that there isno simple way to force an error if the set
of rules doesn't cover the insertion date; the datawill silently go into the root table instead.

. Ensure that the constraint_exclusion configuration parameter is not disabled in
post gr esql . conf ; otherwise child tables may be accessed unnecessarily.

As we can see, a complex table hierarchy could require a substantial amount of DDL. In the above
example we would be creating a new child table each month, so it might be wise to write a script that
generates the required DDL automatically.

105

Data Definition

5.12.3.2. Maintenance for Inheritance Partitioning

To remove old data quickly, simply drop the child table that is no longer necessary:

DROP TABLE neasurenment _y2006n02;

To remove the child table from the inheritance hierarchy table but retain accessto it asatablein its
own right:

ALTER TABLE neasurenment _y2006nmD2 NO | NHERI T neasur enent ;

To add a new child table to handle new data, create an empty child table just as the original children
were created above:

CREATE TABLE measur enent _y2008n02 (
CHECK (| ogdate >= DATE ' 2008-02- 01" AND | ogdate < DATE
' 2008-03-01')
) INHERI TS (neasurenent);

Alternatively, one may want to create and populate the new child table before adding it to the table
hierarchy. This could allow data to be loaded, checked, and transformed before being made visible
to queries on the parent table.

CREATE TABLE neasur enent _y2008n0D2
(LI KE measur erment | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS) ;
ALTER TABLE neasur enent _y2008nD2 ADD CONSTRAI NT y2008nmD2
CHECK (| ogdate >= DATE ' 2008-02-01' AND | ogdate < DATE
'2008-03-01');
\ copy neasurenent _y2008n02 from ' measurenment _y2008nD2'
-- possibly sone other data preparati on work
ALTER TABLE neasurenent_y2008nD2 | NHERI T neasur ement ;

5.12.3.3. Caveats

The following caveats apply to partitioning implemented using inheritance:

» Thereis no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is
safer to create code that generates child tables and creates and/or modifies associated objects than
to write each by hand.

* Indexesandforeign key constraints apply to singletablesand not to their inheritance children, hence
they have some caveats to be aware of .

» Theschemesshown here assumethat the values of arow'skey column(s) never change, or at least do
not change enough to requireit to moveto another partition. An UPDATE that attemptsto do that will
fail because of the CHECK constraints. If you need to handle such cases, you can put suitable update
triggers on the child tables, but it makes management of the structure much more complicated.

* Manua VACUUMand ANAL YZE commands will automatically process al inheritance child tables.
If thisis undesirable, you can use the ONLY keyword. A command like:
ANALYZE ONLY neasur emnent;

will only process the root table.

106

Data Definition

e | NSERT statements with ON CONFLI CT clauses are unlikely to work as expected, as the ON
CONFLI CT action is only taken in case of unique violations on the specified target relation, not
its child relations.

 Triggers or rules will be needed to route rows to the desired child table, unless the application is

explicitly aware of the partitioning scheme. Triggers may be complicated to write, and will be much
slower than the tuple routing performed internally by declarative partitioning.

5.12.4. Partition Pruning

Partition pruning is a query optimization technique that improves performance for declaratively
partitioned tables. As an example:

SET enabl e_partition_pruning = on; -- the default
SELECT count (*) FROM neasur enent WHERE | ogdat e >= DATE
' 2008-01-01';

Without partition pruning, the above query would scan each of the partitions of the neasur enent

table. With partition pruning enabled, the planner will examine the definition of each partition and
prove that the partition need not be scanned because it could not contain any rows meeting the query's
WHERE clause. When the planner can provethis, it excludes (prunes) the partition from the query plan.

By using the EXPLAIN command and the enable partition_pruning configuration parameter, it's
possible to show the difference between a plan for which partitions have been pruned and one for
which they have not. A typical unoptimized plan for thistype of table setup is:

SET enabl e_partition_pruning = off;
EXPLAI N SELECT count (*) FROM neasur enent WHERE | ogdat e >= DATE
' 2008-01-01';
QUERY PLAN

Aggregate (cost=188.76..188.77 rows=1 wi dt h=8)
-> Append (cost=0.00..181.05 rows=3085 wi dt h=0)
-> Seq Scan on measurenent_y2006n0D2 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on measurenent_y2006n03 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

-> Seq Scan on neasurenent_y2007nll1 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent_y2007nl2 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent_y2008nD1 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

Some or all of the partitions might use index scansinstead of full-table sequential scans, but the point
here is that there is no need to scan the older partitions at all to answer this query. When we enable
partition pruning, we get a significantly cheaper plan that will deliver the same answer:

107

Data Definition

SET enabl e_partition_pruning = on;
EXPLAI N SELECT count (*) FROM nmeasur enent WHERE | ogdat e >= DATE
' 2008-01-01';
QUERY PLAN

Aggregate (cost=37.75..37.76 rows=1 wi dt h=8)
-> Seq Scan on neasurenent_y2008n01 (cost=0.00..33.12 rows=617
wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

Note that partition pruning is driven only by the constraints defined implicitly by the partition keys,
not by the presence of indexes. Therefore it isn't necessary to define indexes on the key columns.
Whether an index needsto be created for agiven partition depends on whether you expect that queries
that scan the partition will generally scan a large part of the partition or just a small part. An index
will be helpful in the latter case but not the former.

Partition pruning can be performed not only during the planning of a given query, but aso during its
execution. Thisisuseful asit can allow more partitionsto be pruned when clauses contain expressions
whose values are not known at query planning time, for example, parameters defined in a PREPARE
statement, using avalue obtained from a subquery, or using a parameterized value on the inner side of
anested loop join. Partition pruning during execution can be performed at any of the following times:

» During initialization of the query plan. Partition pruning can be performed here for parameter
values which are known during the initialization phase of execution. Partitions which are pruned
during this stage will not show up in the query's EXPLAI Nor EXPLAI N ANALYZE. It ispossible
to determine the number of partitions which were removed during this phase by observing the
“Subplans Removed” property in the EXPLAI N output. The query planner obtains locks for all
partitions which are part of the plan. However, when the executor uses a cached plan, locks are
only obtained on the partitions which remain after partition pruning done during the initialization
phase of execution, i.e., the ones shown in the EXPLAI N output and not the ones referred to by the
“Subplans Removed” property.

* During actual execution of the query plan. Partition pruning may also be performed here to remove
partitions using values which are only known during actual query execution. This includes values
from subqueries and values from execution-time parameters such as those from parameterized
nested loop joins. Since the value of these parameters may change many times during the execution
of the query, partition pruning is performed whenever one of the execution parametersbeing used by
partition pruning changes. Determining if partitions were pruned during this phase requires careful
inspection of the| oops property in the EXPLAI N ANAL YZE output. Subplans corresponding to
different partitions may have different values for it depending on how many times each of them
was pruned during execution. Some may be shown as (never execut ed) if they were pruned
every time.

Partition pruning can be disabled using the enable_partition_pruning setting.

5.12.5. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique similar to partition pruning. While it is
primarily used for partitioning implemented using the legacy inheritance method, it can be used for
other purposes, including with declarative partitioning.

Constraint exclusion worksin avery similar way to partition pruning, except that it uses each table's
CHECK constraints — which gives it its name — whereas partition pruning uses the table's partition
bounds, which exist only in the case of declarative partitioning. Another difference is that constraint
exclusionisonly applied at plan time; thereis no attempt to remove partitions at execution time.

Thefact that constraint exclusion uses CHECK constraints, which makesit slow compared to partition
pruning, can sometimes be used as an advantage: because constraints can be defined even on

108

Data Definition

declaratively-partitioned tables, in addition to their internal partition bounds, constraint exclusion may
be able to elide additional partitions from the query plan.

The default (and recommended) setting of constraint_exclusion is neither on nor of f, but an
intermediate setting called par ti ti on, which causes the technique to be applied only to queries
that are likely to be working on inheritance partitioned tables. The on setting causes the planner to
examine CHECK constraintsin all queries, even simple ones that are unlikely to benefit.

The following caveats apply to constraint exclusion:

» Constraint exclusionisonly applied during query planning, unlike partition pruning, which can also
be applied during query execution.

» Congtraint exclusion only works when the query's WHERE clause contains constants (or externally
supplied parameters). For example, a comparison against a non-immutable function such as
CURRENT _TI MESTAMP cannot be optimized, since the planner cannot know which child table the
function's value might fall into at run time.

» Keep the partitioning constraints simple, else the planner may not be able to prove that child
tables might not need to be visited. Use simple equality conditions for list partitioning, or simple
range tests for range partitioning, as illustrated in the preceding examples. A good rule of thumb
is that partitioning constraints should contain only comparisons of the partitioning column(s) to
constants using B-tree-indexable operators, because only B-tree-indexable column(s) are allowed
in the partition key.

» All constraints on all children of the parent table are examined during constraint exclusion, so
large numbers of children are likely to increase query planning time considerably. So the legacy
inheritance based partitioning will work well with up to perhaps a hundred child tables; don't try
to use many thousands of children.

5.12.6. Best Practices for Declarative Partitioning

The choice of how to partition atable should be made carefully, as the performance of query planning
and execution can be negatively affected by poor design.

One of the most critical design decisions will be the column or columns by which you partition your
data. Often the best choice will be to partition by the column or set of columns which most commonly
appear in WHERE clauses of queries being executed on the partitioned table. WHERE clauses that are
compatible with the partition bound constraints can be used to prune unneeded partitions. However,
you may be forced into making other decisions by requirementsfor the PRI MARY KEY or a UNI QUE
constraint. Removal of unwanted data is also a factor to consider when planning your partitioning
strategy. An entire partition can be detached fairly quickly, so it may be beneficial to design the
partition strategy in such away that all datato be removed at onceislocated in asingle partition.

Choosing the target number of partitionsthat the table should be divided into isalso acritical decision
to make. Not having enough partitions may mean that indexes remain too large and that data locality
remains poor which could result in low cache hit ratios. However, dividing the table into too many
partitions can also cause issues. Too many partitions can mean longer query planning times and higher
memory consumption during both query planning and execution, as further described below. When
choosing how to partition your table, it's also important to consider what changes may occur in the
future. For example, if you choose to have one partition per customer and you currently have a small
number of large customers, consider the implicationsif in several years you instead find yourself with
alarge number of small customers. In this case, it may be better to choose to partition by HASH and
choose a reasonable number of partitions rather than trying to partition by L1 ST and hoping that the
number of customers does not increase beyond what it is practical to partition the data by.

Sub-partitioning can be useful to further divide partitionsthat are expected to become larger than other
partitions. Another option isto use range partitioning with multiple columnsin the partition key. Either
of these can easily |ead to excessive numbers of partitions, so restraint is advisable.

109

Data Definition

5.13

5.14

It is important to consider the overhead of partitioning during query planning and execution. The
guery planner is generally able to handle partition hierarchies with up to a few thousand partitions
fairly well, provided that typical queries allow the query planner to prune al but a small number
of partitions. Planning times become longer and memory consumption becomes higher when more
partitions remain after the planner performs partition pruning. Another reason to be concerned about
having alarge number of partitions is that the server's memory consumption may grow significantly
over time, especially if many sessions touch large numbers of partitions. That's because each partition
requires its metadata to be loaded into the local memory of each session that touches it.

With data warehouse type workloads, it can make sense to use alarger number of partitions than with
an OLTP type workload. Generally, in data warehouses, query planning time is less of a concern as
the majority of processing time is spent during query execution. With either of these two types of
workload, it isimportant to make the right decisions early, as re-partitioning large quantities of data
can be painfully slow. Simulations of the intended workload are often beneficial for optimizing the
partitioning strategy. Never just assume that more partitions are better than fewer partitions, nor vice-
versa

Foreign Data

PostgreSQL implements portions of the SQL/MED specification, allowing you to access data that
resides outside PostgreSQL using regular SQL queries. Such datais referred to asforeign data. (Note
that this usage is not to be confused with foreign keys, which are a type of constraint within the
database.)

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is a library
that can communicate with an external data source, hiding the details of connecting to the data source
and obtaining datafrom it. There are someforeign datawrappersavailableascont r i b modules; see
Appendix F. Other kinds of foreign data wrappers might be found as third party products. If none of
the existing foreign data wrappers suit your needs, you can write your own; see Chapter 58.

To access foreign data, you need to create a foreign server object, which defines how to connect to
a particular external data source according to the set of options used by its supporting foreign data
wrapper. Then you need to create one or more foreign tables, which define the structure of the remote
data. A foreign table can be used in queries just like anormal table, but aforeign table has no storage
inthe PostgreSQL server. Whenever it is used, PostgreSQL asksthe foreign datawrapper to fetch data
from the external source, or transmit datato the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can
be provided by a user mapping, which can provide additional data such as user names and passwords
based on the current PostgreSQL role.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER,
CREATE USER MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

Other Database Objects

Tables are the central objectsin arelational database structure, because they hold your data. But they
are not the only objectsthat exist in adatabase. Many other kinds of objects can be created to makethe
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you alist here so that you are aware of what is possible:

* Views

Functions, procedures, and operators
» Datatypes and domains

 Triggers and rewrite rules

110

Data Definition

Detailed information on these topics appearsin Part V.

5.15. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints,
views, triggers, functions, etc. you implicitly create a net of dependencies between the objects. For
instance, atable with aforeign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we
considered in Section 5.5.5, with the orders table depending on it, would result in an error message
likethis:

DROP TABLE products;

ERROR: cannot drop table products because ot her objects depend on
it

DETAIL: constraint orders_product_no_fkey on table orders depends
on table products

H NT: Use DROP ... CASCADE to drop the dependent objects too.

Theerror message containsauseful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objects will be removed, as will any objects that depend on them, recursively.
In this case, it doesn't remove the orders table, it only removes the foreign key constraint. It stops
there because nothing depends on the foreign key constraint. (If you want to check what DROP . . .
CASCADE will do, run DROP without CASCADE and read the DETAI L output.)

Almost all DROP commands in PostgreSQL support specifying CASCADE. Of course, the nature of
the possible dependencies varies with the type of the object. Y ou can also write RESTRI CT instead
of CASCADE to get the default behavior, which is to prevent dropping objects that any other objects
depend on.

Note

According to the SQL standard, specifying either RESTRI CT or CASCADE is required in
a DROP command. No database system actually enforces that rule, but whether the default
behavior is RESTRI CT or CASCADE varies across systems.

If a DROP command lists multiple objects, CASCADE is only required when there are dependencies
outside the specified group. For example, when saying DROP TABLE t abl, tab2 theexistence
of aforeign key referencingt ab1 fromt ab2 would not mean that CASCADE is needed to succeed.

For a user-defined function or procedure whose body is defined as a string literal, PostgreSQL tracks
dependencies associated with the function's externally-visible properties, such as its argument and
result types, but not dependencies that could only be known by examining the function body. As an
example, consider this situation:

CREATE TYPE rai nbow AS ENUM ('red', 'orange', 'vyellow,
"green', 'blue', 'purple');

111

Data Definition

CREATE TABLE my_col ors (col or rai nbow, note text);

CREATE FUNCTI ON get _col or _note (rai nbow) RETURNS text AS
' SELECT note FROM ny_col ors WHERE col or = $1'
LANGUACE SQL;

(See Section 36.5 for an explanation of SQL-language functions.) PostgreSQL will be aware that the
get _col or _not e function dependsonther ai nbowtype: dropping thetype would force dropping
the function, because its argument type would no longer be defined. But PostgreSQL will not consider
get _col or _not e todependontheny_col or s table, and sowill not drop thefunctionif thetable
isdropped. While there are disadvantages to this approach, there are also benefits. The function is still
valid in some sense if the table is missing, though executing it would cause an error; creating a new
table of the same name would allow the function to work again.

On the other hand, for an SQL -language function or procedure whose body iswritten in SQL -standard
style, the body is parsed at function definition time and all dependencies recognized by the parser are
stored. Thus, if we write the function above as

CREATE FUNCTI ON get _col or _note (rai nbow) RETURNS t ext
BEG N ATOM C

SELECT note FROM ny_col ors WHERE col or = $1;
END;

then the function's dependency ontheny_col or s table will be known and enforced by DROP.

112

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. The
chapter after thiswill finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When atableis created, it contains no data. The first thing to do before a database can be of much use
isto insert data. Datais inserted one row at atime. Y ou can aso insert more than one row in asingle
command, but it is not possible to insert something that is not acomplete row. Even if you know only
some column values, a complete row must be created.

To create anew row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric

)

An example command to insert arow would be:

I NSERT | NTO products VALUES (1, 'Cheese', 9.99);

The datavalues are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columnsin the table. To

avoid thisyou can asolist the columns explicitly. For example, both of the following commands have
the same effect as the one above:

I NSERT | NTO products (product_no, nane, price) VALUES (1, 'Cheese',

9.99);
I NSERT | NTO products (name, price, product_no) VALUES (' Cheese',
9.99, 1);

Many users consider it good practice to always list the column names.

If you don't have valuesfor all the columns, you can omit some of them. In that case, the columns will
be filled with their default values. For example;

| NSERT | NTO products (product_no, name) VALUES (1, 'Cheese');
I NSERT | NTO products VALUES (1, 'Cheese');

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columnsor for the entire row:

I NSERT | NTO products (product_no, nanme, price) VALUES (1, 'Cheese',
DEFAULT) ;

113

Data Manipulation

I NSERT | NTO products DEFAULT VALUES,;

Y ou can insert multiple rowsin a single command:

I NSERT | NTO products (product_no, nane, price) VALUES
(1, 'Cheese', 9.99),
(2, 'Bread', 1.99),
(3, "MIk', 2.99);

It isalso possible to insert the result of a query (which might be no rows, one row, or many rows):

I NSERT | NTO products (product_no, name, price)
SELECT product_no, name, price FROM new_products
WHERE r el ease_date = 'today';

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip

When inserting a lot of data at the same time, consider using the COPY command. It is not
as flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more
information on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. Y ou can update
individual rows, al therowsin atable, or asubset of all rows. Each column can be updated separately;
the other columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. Thename of the table and column to update
2. Thenew value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does nat, in general, provide aunique identifier for rows. Thereforeit
is not always possible to directly specify which row to update. Instead, you specify which conditions
arow must meet in order to be updated. Only if you have a primary key in the table (independent
of whether you declared it or not) can you reliably address individual rows by choosing a condition
that matches the primary key. Graphical database access toolsrely on thisfact to allow you to update
rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that
does not match any rows.

Let'slook at that command in detail. First is the key word UPDATE followed by the table name. As
usual, the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key
word SET followed by the column name, an equal sign, and the new column value. The new column
value can be any scalar expression, not just a constant. For example, if you want to raise the price of
all products by 10% you could use:

114

Data Manipulation

UPDATE products SET price = price * 1.10;

Asyou see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present,
only those rows that match the WHERE condition are updated. Note that the equals sign in the SET
clauseisan assignment while the onein the WHERE clause isacomparison, but thisdoes not create any
ambiguity. Of course, the WHERE condition does not have to be an equality test. Many other operators
are available (see Chapter 9). But the expression needs to evaluate to a Boolean result.

Y ou can update more than one column in an UPDATE command by listing more than one assignment
in the SET clause. For example:

UPDATE nytable SET a =5, b =3, ¢ =1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add datato tables and how to change data. What remainsisto discuss
how to remove data that is no longer needed. Just as adding datais only possible in whole rows, you
can only remove entire rows from atable. In the previous section we explained that SQL does not
provide a way to directly address individual rows. Therefore, removing rows can only be done by
specifying conditionsthat the rowsto be removed haveto match. If you haveaprimary key inthetable
then you can specify the exact row. But you can also remove groups of rows matching a condition,
or you can remove all rows in the table at once.

Y ou use the DEL ETE command to remove rows; the syntax isvery similar to the UPDATE command.
For instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;

If you simply write:

DELETE FROM product s;

then all rows in the table will be deleted! Caveat programmer.

6.4. Returning Data from Modified Rows

Sometimes it is useful to obtain data from modified rows while they are being manipulated. The
| NSERT, UPDATE, DELETE, and MERGE commands all have an optional RETURNI NG clause that
supports this. Use of RETURNI NG avoids performing an extra database query to collect the data, and
is especially valuable when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNI NG clause are the same as a SELECT command's output list (see
Section 7.3). It can contain column names of the command's target table, or value expressions using
those columns. A common shorthand is RETURNI NG * , which selects all columns of the target table
in order.

In an | NSERT, the default data available to RETURNI NGis the row as it was inserted. This is not
so useful in trivia inserts, since it would just repeat the data provided by the client. But it can be
very handy when relying on computed default values. For example, whenusingaseri al columnto
provide unique identifiers, RETURNI NG can return the ID assigned to a new row:

CREATE TABLE users (firstnane text, |lastnanme text, id serial
primary key);

115

Data Manipulation

I NSERT | NTO users (firstnane, |astnanme) VALUES ('Joe', 'Cool")
RETURNI NG i d;

The RETURNI NGclauseis also very useful with | NSERT ... SELECT.

In an UPDATE, the default data available to RETURNI NG is the new content of the modified row.
For example:

UPDATE products SET price = price * 1.10
WHERE price <= 99.99
RETURNI NG nane, price AS new price;

InaDELETE, thedefault dataavailableto RETURNI NGisthe content of the deleted row. For example:

DELETE FROM product s
WHERE obsol eti on_date = 'today'
RETURNI NG *;

In aMERGE, the default dataavailableto RETURNI NGisthe content of the source row plusthe content
of the inserted, updated, or deleted target row. Since it is quite common for the source and target to
have many of the same columns, specifying RETURNI NG * can lead to alot of duplicated columns,
so it is often more useful to qualify it so as to return just the source or target row. For example:

MERGE | NTO products p USI NG new products n ON p. product_no =
n. product _no

WHEN NOT MATCHED THEN | NSERT VALUES (n. product _no, n.nane,
n.price)

WHEN MATCHED THEN UPDATE SET nane = n.name, price = n.price

RETURNI NG p. *;

In each of these commands, it is also possible to explicitly return the old and new content of the
modified row. For example:

UPDATE products SET price = price * 1.10
WHERE price <= 99.99
RETURNI NG nane, old.price AS old_price, new price AS new price,
new. price - old.price AS price_change;

In this example, writing new. pri ce isthe same as just writing pr i ce, but it makes the meaning
clearer.

This syntax for returning old and new valuesisavailablein | NSERT, UPDATE, DELETE, and MERGE
commands, but typically old valueswill be NULL for an| NSERT, and new valueswill be NULL for a
DELETE. However, there are situations where it can still be useful for those commands. For example,
inan | NSERT with an ON CONFLI CT DO UPDATE clause, the old values will be non-NULL for
conflicting rows. Similarly, if a DELETE isturned into an UPDATE by arewrite rule, the new values
may be non-NULL.

If there are triggers (Chapter 37) on the target table, the data available to RETURNI NGis the row as
modified by the triggers. Thus, inspecting columns computed by triggersis another common use-case
for RETURNI NG,

116

Chapter 7. Queries

The previous chapters explained how to createtables, how tofill themwith data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL
the SELECT command is used to specify queries. The general syntax of the SELECT command is

[WTH wi th_queries] SELECT select |ist FROMtabl e_expression
[sort_specification]

The following sections describe the details of the select list, the table expression, and the sort
specification. W TH queries are treated last since they are an advanced feature.

A simple kind of query has the form:

SELECT * FROM t abl el;

Assuming that there is atable called t abl el, this command would retrieve al rows and all user-
defined columns from t abl el. (The method of retrieval depends on the client application. For
example, the psgl program will display an ASCII-art table on the screen, while client libraries will
offer functionsto extract individual valuesfrom the query result.) The select list specification* means
all columns that the table expression happens to provide. A select list can also select a subset of the
available columns or make calculations using the columns. For example, if t abl el has columns
named a, b, and ¢ (and perhaps others) you can make the following query:

SELECT a, b + ¢ FROM t abl el;
(assuming that b and ¢ are of anumerical datatype). See Section 7.3 for more details.

FROM tabl el is a simple kind of table expression: it reads just one table. In general, table
expressions can be complex constructs of base tables, joins, and subqueries. But you can also omit the
table expression entirely and use the SELECT command as a calculator:

SELECT 3 * 4;
Thisis more useful if the expressions in the select list return varying results. For example, you could

call afunction thisway:

SELECT random();

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROMclause that is optionally
followed by WHERE, GROUP BY, and HAVI NG clauses. Trivia table expressions simply refer to a
table on disk, a so-called base table, but more complex expressions can be used to modify or combine
base tables in various ways.

The optional WHERE, GROUP BY, and HAVI NG clauses in the table expression specify a pipeline
of successive transformations performed on the table derived in the FROM clause. All these

117

Queries

transformations produce a virtual table that provides the rows that are passed to the select list to
compute the output rows of the query.

7.2.1. The FROMClause

The FROM clause derives a table from one or more other tables given in a comma-separated table
reference list.

FROM tabl e_reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a
subguery, a JA N construct, or complex combinations of these. If more than one table reference is
listed in the FROM clause, the tables are cross-joined (that is, the Cartesian product of their rows is
formed; see below). Theresult of the FROMIist isan intermediate virtual table that can then be subject
to transformations by the WHERE, GROUP BY, and HAVI NG clauses and is finally the result of the
overall table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table
reference produces rows of not only that table but al of its descendant tables, unless the key word
ONLY precedes the table name. However, the reference produces only the columns that appear in the
named table — any columns added in subtables are ignored.

Instead of writing ONLY before the table name, you can write * after the table name to explicitly
specify that descendant tables are included. There is no real reason to use this syntax any more,
because searching descendant tablesis now always the default behavior. However, it is supported for
compatibility with older releases.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of ajoined tableis

Tl join_type T2 [join_condition]

Joins of al types can be chained together, or nested: either or both T1 and T2 can be joined tables.
Parentheses can be used around JO N clauses to control thejoin order. In the absence of parentheses,
JO Nclauses nest | eft-to-right.

Join Types

Crossjoin

Tl CROSS JAO N T2

For every possible combination of rows from T1 and T2 (i.e., a Cartesian product), the joined
table will contain a row consisting of all columnsin T1 followed by al columnsin T2. If the
tables have N and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JO N T2 isequivalentto FROM T1 | NNER JO N T2 ON TRUE (see
below). Itisalso equivalent to FROM T1, T2.

Note

This latter equivalence does not hold exactly when more than two tables appear, because
JA N binds more tightly than comma. For example FROM T1 CROSS JO N T2
I NNER JO N T3 ON condi ti onisnotthesameasFROM T1, T2 | NNER JO N

118

Queries

T3 ON condi ti on because the condi ti on can reference T1 in the first case but
not the second.

Qualified joins

TL { [INNER] | { LEFT | RIGHT | FULL } [QUTER] } JON T2

ON bool ean_expressi on

TL { [INNER] | { LEFT | RIGHT | FULL } [QUTER] } JO N T2 USI NG
(join colum list)

T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [QUTER] } JON T2

The words | NNER and OQUTER are optional in all forms. | NNER is the default; LEFT, Rl GHT,
and FULL imply an outer join.

Thejoin condition is specified in the ON or USI NG clause, or implicitly by the word NATURAL.
Thejoin condition determines which rows from the two source tables are considered to “match”,
as explained in detail below.

The possible types of qualified join are:
I NNER JO N

For each row R1 of T1, the joined table has arow for each row in T2 that satisfies the join
condition with R1.

LEFT OQUTER JO N

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, ajoined row is added with null valuesin columns of T2. Thus,
the joined table always has at least one row for each row in T1.

Rl GHT QUTER JAO N

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join
condition with any row in T1, ajoined row is added with null valuesin columns of T1. This
isthe converse of aleft join: the result table will always have arow for each row in T2.

FULL OQUTER JAO N

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, ajoined row is added with null valuesin columns of T2. Also,
for each row of T2 that does not satisfy the join condition with any row in T1, ajoined row
with null valuesin the columns of T1 is added.

The ON clause is the most general kind of join condition: it takes a Boolean value expression of
the same kind as is used in a WHERE clause. A pair of rows from T1 and T2 match if the ON
expression evaluates to true.

The USI NGclauseisashorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated
list of the shared column names and forms ajoin condition that includes an equality comparison
for each one. For example, joining T1 and T2 with USI NG (a, b) producesthejoin condition
ON Tl.a = T2.a AND Tl.b = T2.b.

Furthermore, the output of JO N USI NG suppresses redundant columns: thereis no need to print
both of the matched columns, since they must have equal values. While JO N ON produces all
columns from T1 followed by al columnsfrom T2, JO N USI NG produces one output column
for each of the listed column pairs (in the listed order), followed by any remaining columns from
T1, followed by any remaining columns from T2.

119

Queries

Finally, NATURAL isashorthand form of USI NG it formsaUSI NGlist consisting of all column
names that appear in both input tables. As with USI NG, these columns appear only once in the
output table. If there are no common column names, NATURAL JO N behaves like CRCSS

JO N.

Note

USI NGisreasonably safefrom column changesin thejoined relationssince only thelisted
columns are combined. NATURAL is considerably more risky since any schema changes
to either relation that cause a new matching column name to be present will cause thejoin
to combine that new column as well.

To put this together, assume we have tablest 1:

num | nane

then we get

the following results for the various joins:

=> SELECT * FROMt1l CRCSS JO N t2;
num | nane | num| val ue

T WWWNNNRP, R PP

7
~ 0 00T TUTO9 9O

(9

GQWkFRFUOOWERE OWwPRk

+
|
|
| zzz
|
|
|
|
|
|

=> SELECT * FROMt1l INNER JON t2 ONt1l.num= t2. num
num | nane | num| val ue

=> SELECT * FROMt1 INNER JO N t2 USING (num;

num | n

ame | val ue

120

Queries

3| ¢ | yyy
(2 rows)

=> SELECT * FROM t1 NATURAL | NNER JO N t 2;
num | nane | val ue

_____ Fmm e e e e e - - -
1| a | xxx
31 ¢ | yyy

(2 rows)

=> SELECT * FROMt1 LEFT JON t2 ON t1. num = t2. num
num| name | num| val ue

yyy

=> SELECT * FROMt1 LEFT JO N t2 USING (nun;

=> SELECT * FROMt1l RIGHT JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
31 ¢ | 31 yyy

| | 5| zzz
(3 rows)

=> SELECT * FROMt1 FULL JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
2] b | |
31 ¢ | 31 yyy

| | 51| zzz
(4 rows)

The join condition specified with ON can al so contain conditions that do not relate directly to thejoin.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROMt1 LEFT JONt2 ONtl.num= t2.num AND t 2. val ue =

XXX ;
num| name | num| val ue
----- Ty U
1| a | 1| xxx
2| b | |
3] c | |
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

121

Queries

=> SELECT * FROMt1 LEFT JON t2 ON t1.num = t2. num WHERE t 2. val ue

= " Xxx";

num| name | num| val ue

----- Ty
1| a | 1| xxx

(1 row

This is because a restriction placed in the ON clause is processed before the join, while a restriction
placed in the WHERE clause is processed after the join. That does not matter with inner joins, but it
matters alot with outer joins.

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to
the derived table in the rest of the query. Thisis called atable alias.

To create atable alias, write

FROM t abl e_reference AS ali as

or

FROM t abl e_reference ali as
The AS key word is optional noise. al i as can be any identifier.

A typical application of table aliasesis to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM sone_very long table name s JON
another fairly long nane a ON s.id = a.num

The alias becomes the new name of the table reference so far as the current query is concerned — it
is not allowed to refer to the table by the original name elsewherein the query. Thus, thisisnot valid:

SELECT * FROM ny_table AS m WHERE ny_table.a > 5; -- wrong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a
tableto itself, e.g.:

SELECT * FROM people AS nmother JO N people AS child ON nother.id =
chi I d. not her _i d;

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the
alias b to the second instance of my_t abl e, but the second statement assigns the alias to the result
of thejoin:

SELECT * FROM ny_table AS a CROSS JON ny_table AS b ...

SELECT * FROM (ny_table AS a CROSS JON ny_table) AS b ...

Another form of table aliasing gives temporary names to the columns of the table, aswell asthetable
itself:

FROM tabl e reference [AS] alias (columl [, colum2 [, ...]])

122

Queries

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an diasis applied to the output of aJO N clause, the alias hides the original name(s) within
the JA N. For example:

SELECT a.* FROM ny_table AS a JON your _table AS b ON ...

isvalid SQL, but:

SELECT a.* FROM (ny_table AS a JO N your _table AS b ON...) ASc

isnot valid; thetable alias a is not visible outside the dlias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses. They may be assigned atable
alias name, and optionally column alias names (as in Section 7.2.1.2). For example:

FROM (SELECT * FROM tabl el) AS alias_nane

This example is equivalent to FROM t abl el AS al i as_name. More interesting cases, which
cannot be reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES ('anne', 'smith'), ('bob', '"jones'), ('joe', "blow))
AS nanes(first, |ast)

Again, atable aiasisoptional. Assigning alias names to the columns of the VALUES list is optional,
but is good practice. For more information see Section 7.7.

According to the SQL standard, atable alias name must be supplied for asubquery. PostgreSQL allows
AS and the alias to be omitted, but writing one is good practice in SQL code that might be ported to
another system.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar
types) or composite data types (table rows). They are used like atable, view, or subquery in the FROM
clause of aquery. Columnsreturned by table functions can beincluded in SELECT, JO N, or WHERE
clauses in the same manner as columns of atable, view, or subquery.

Table functions may also be combined using the RONS FROM syntax, with the results returned in
paralel columns; the number of result rows in this case is that of the largest function result, with
smaller results padded with null values to match.

function_call [WTH ORDI NALITY] [[AS] table_alias [(columm_alias
[, ... DII

ROMS FROM function_call [, ...]) [WTH ORDI NALI TY]

[[AS] table alias [(colum_alias [, ...])]11]

If theW TH ORDI NALI TY clauseis specified, an additional column of typebi gi nt will be added
to the function result columns. This column numbers the rows of the function result set, starting from
1. (Thisis ageneraization of the SQL-standard syntax for UNNEST ... W TH ORDI NALI TY.)

123

Queries

By default, the ordinal columniscalled or di nal i t y, but adifferent column name can be assigned
toit using an AS clause.

The special table function UNNEST may be called with any number of array parameters, and it returns
a corresponding number of columns, asif UNNEST (Section 9.19) had been called on each parameter
separately and combined using the ROAS FROMconstruct.

UNNEST(array_expression [, ...]) [WTH ORDI NALI TY]
[[AS] table alias [(colum_alias [, ... 1)]11]

If not abl e_al i as isspecified, the function nameis used as the table name; in the case of a ROAS
FROM) construct, the first function's name is used.

If column aliases are not supplied, then for afunction returning a base data type, the column nameis
also the same as the function name. For a function returning a composite type, the result columns get
the names of the individual attributes of the type.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, foonane text);

CREATE FUNCTI ON get f oo(i nt) RETURNS SETOF foo AS $$
SELECT * FROM f oo WHERE fooid = $1;
$$ LANGUAGE SQ.;

SELECT * FROM getfoo(1) AS t1;

SELECT * FROM f oo
WHERE f oosubid IN (
SELECT f oosubi d
FROM get f oo(foo.fooid) z
WHERE z.fooid = foo.fooid

)1
CREATE VI EW vw getfoo AS SELECT * FROM getfoo(1l);

SELECT * FROM vw_get f oo;

In some cases it is useful to define table functions that can return different column sets depending
on how they are invoked. To support this, the table function can be declared as returning the pseudo-
typer ecor d with no OUT parameters. When such a function is used in a query, the expected row
structure must be specified in the query itself, so that the system can know how to parse and plan the
guery. This syntax looks like:

function_call [AS] alias (colum_definition [, 1)
function_call AS [alias] (columm_definition [, ...])
ROAMS FROM ... function_call AS (colum_definition [, 1)

[, ... 1)

When not using the ROANS FROM) syntax, the col urm_defi ni ti on list replaces the column
aliaslist that could otherwise be attached to the FROMitem; the namesin the column definitions serve
as column aliases. When using the ROAS FROM) syntax, acol urm_defini ti on list can be
attached to each member function separately; or if there is only one member function and no W TH
ORDI NALI TY clause, acol utm_defi ni ti on list can be written in place of a column alias list
following ROAS FROM) .

Consider this example:

124

Queries

SELECT *
FROM dbl i nk(' dbname=nydb', ' SELECT pronane, prosrc FROM
pg_proc’)
AS t 1(pronane nane, prosrc text)
WHERE pronane LIKE ' bytea% ;

The dblink function (part of the dblink module) executes a remote query. It is declared to return
r ecor d since it might be used for any kind of query. The actual column set must be specified in the
calling query so that the parser knows, for example, what * should expand to.

This example uses RONS FROM

SELECT *
FROM ROA5 FROM

(
json_to recordset('[{"a":40,"b":"fo0"},
{"a":"100","b":"bar"}]")
AS (a INTEGER, b TEXT),
generate_series(1, 3)
) AS x (p, d, s)
ORDER BY p;

40 | foo | 1
100 | bar | 2
| | 3

It joins two functions into a single FROMtarget.] son_t o_recor dset () isinstructed to return
two columns, thefirsti nt eger andthesecondt ext . Theresultof gener at e_seri es() isused
directly. The ORDER BY clause sorts the column values asintegers.

7.2.1.5. LATERAL Subqueries

Subqueries appearing in FROM can be preceded by the key word LATERAL. This allows them
to reference columns provided by preceding FROM items. (Without LATERAL, each subquery is
evaluated independently and so cannot cross-reference any other FROMitem.)

Table functions appearing in FROMcan al so be preceded by the key word LATERAL, but for functions
the key word is optional; the function's arguments can contain references to columns provided by
preceding FROMitems in any case.

A LATERAL item can appear at thetop level in the FROMIist, or withinaJO Ntree. Inthelatter case
it can also refer to any itemsthat are on the left-hand side of aJ O Nthat it ison theright-hand side of .

When a FROMitem contains LATERAL cross-references, evaluation proceeds as follows: for each
row of the FROMitem providing the cross-referenced column(s), or set of rows of multiple FROM
items providing the columns, the LATERAL item is evaluated using that row or row set's values of
the columns. The resulting row(s) are joined as usual with the rows they were computed from. Thisis
repeated for each row or set of rows from the column source table(s).

A trivial example of LATERAL is

SELECT * FROM foo, LATERAL (SELECT * FROM bar WHERE bar.id =
foo. bar_id) ss;

Thisis not especially useful since it has exactly the same result as the more conventional

125

Queries

7.2.2.

SELECT * FROM foo, bar WHERE bar.id = foo. bar_id;

LATERAL isprimarily useful when the cross-referenced columnis necessary for computing the row(s)
to be joined. A common application is providing an argument value for a set-returning function. For
example, supposing that ver t i ces(pol ygon) returns the set of vertices of a polygon, we could
identify close-together vertices of polygons stored in atable with:

SELECT pl.id, p2.id, vl, v2
FROM pol ygons pl, pol ygons p2,
LATERAL vertices(pl. poly) vi,
LATERAL vertices(p2.poly) v2
WHERE (vl <-> v2) < 10 AND pl.id != p2.id;

This query could also be written

SELECT pl.id, p2.id, vl, v2

FROM pol ygons pl CROSS JO N LATERAL vertices(pl.poly) vi,
pol ygons p2 CROSS JO N LATERAL vertices(p2.poly) v2

WHERE (vl <-> v2) < 10 AND pl.id != p2.id;

or in severa other equivalent formulations. (As already mentioned, the LATERAL key word is
unnecessary in this example, but we use it for clarity.)

It is often particularly handy to LEFT JO N to a LATERAL subquery, so that source rows will
appear in the result even if the LATERAL subquery produces no rows for them. For example,
if get _product _names() returns the names of products made by a manufacturer, but some
manufacturers in our table currently produce no products, we could find out which ones those are
likethis:

SELECT m nane

FROM manuf acturers m LEFT JO N LATERAL get product _names(m i d)
pname ON true

WHERE pnanme | S NULL;

The WHERE Clause

The syntax of the WHERE clauseis

WHERE sear ch_condition

where sear ch_condi ti on isany value expression (see Section 4.2) that returns a value of type
bool ean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked
against the search condition. If the result of the condition is true, the row is kept in the output table,
otherwise (i.e., if the result is false or null) it is discarded. The search condition typically references
at least one column of the table generated in the FROMclause; thisis not required, but otherwise the
WHERE clause will be fairly useless.

Note

The join condition of an inner join can be written either in the WHERE clause or inthe JO N
clause. For example, these table expressions are equivalent:

126

Queries

7.2.3.

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JON b ON (a.id = b.id) WHERE b.val > 5

or perhaps even:

FROM a NATURAL JO N b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The JO N syntax in the FROMclause
is probably not as portable to other SQL database management systems, even though it isin
the SQL standard. For outer joins there is no choice: they must be done in the FROMclause.
The ON or USI NG clause of an outer join is not equivalent to a WHERE condition, because
it results in the addition of rows (for unmatched input rows) as well as the removal of rows
in the final result.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE c1 > 5

SELECT ... FROM fdt WHERE c1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE c1 IN (SELECT cl FROMt2)

SELECT ... FROM fdt WHERE c1 IN (SELECT c3 FROMt2 WHERE c2 =
fdt.cl + 10)

SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT ¢3 FROM t2 WHERE c2 =
fdt.cl + 10) AND 100

SELECT ... FROM fdt WHERE EXI STS (SELECT c1 FROM t2 WHERE c2 >
fdt.cl)

f dt isthetable derived in the FROMclause. Rowsthat do not meet the search condition of the WHERE
clauseare eliminated fromf dt . Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how f dt isreferenced
in the subqueries. Qualifying c1 asf dt. c1 isonly necessary if c1 is aso the name of a column
in the derived input table of the subquery. But qualifying the column name adds clarity even when
it is not needed. This example shows how the column naming scope of an outer query extends into
itsinner queries.

The GROUP BY and HAVI NG Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP
BY clause, and elimination of group rows using the HAVI NG clause.

SELECT sel ect _|i st
FROM . ..
[WHERE . . .]
GROUP BY groupi ng_col um_ref erence
[, grouping colum_reference]...

127

Queries

The GROUP BY clause is used to group together those rows in a table that have the same valuesin
all the columns listed. The order in which the columns are listed does not matter. The effect is to
combine each set of rows having common values into one group row that represents all rows in the
group. This is done to eliminate redundancy in the output and/or compute aggregates that apply to
these groups. For instance:

=> SELECT * FROM test1;

x|y
T .
al| 3
c| 2
b|] 5
al| 1
(4 rows)

=> SELECT x FROM test1 GROUP BY x;
X

a
b
c
(3 rows)

In the second query, we could not have written SELECT * FROM t est 1 GROUP BY x, because
there is no single value for the column y that could be associated with each group. The grouped-by
columns can be referenced in the select list since they have a single value in each group.

Ingenerd, if atableis grouped, columnsthat are not listed in GROUP BY cannot be referenced except
in aggregate expressions. An example with aggregate expressionsiis:

=> SELECT x, sum(y) FROM test1l GROUP BY x;
X | sum

(e
~ N oA

(3 rows

Here sumisan aggregate function that computesasinglevalue over theentiregroup. Moreinformation
about the available aggregate functions can be found in Section 9.21.

Tip

Grouping without aggregate expressions effectively calculates the set of distinct valuesin a
column. This can aso be achieved using the DI STI NCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of
all products):

SELECT product _id, p.name, (sun{s.units) * p.price) AS sales
FROM products p LEFT JO N sales s USI NG (product _id)
GROUP BY product _id, p.nane, p.price;

In this example, the columns pr oduct i d, p. nane, and p. pri ce must be in the GROUP BY
clause since they are referenced in the query select list (but see below). The column s. uni t s does

128

Queries

not have to be in the GROUP BY list sinceit is only used in an aggregate expression (sumf . . .)),
which represents the sales of a product. For each product, the query returns a summary row about all
sales of the product.

If the productstableis set up sothat, say, pr oduct _i d isthe primary key, then it would be enough to
group by pr oduct _i d inthe above example, since name and price would be functionally dependent
on the product ID, and so there would be no ambiguity about which name and price value to return
for each product 1D group.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends
thisto also allow GROUP BY to group by columns in the select list. Grouping by value expressions
instead of simple column namesis also allowed.

If atable has been grouped using GROUP BY, but only certain groups are of interest, the HAVI NG
clause can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM... [WHERE ...] GROUP BY ...
HAVI NG bool ean_expressi on

Expressionsinthe HAVI NGclause can refer both to grouped expressionsand to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROMtest1l GROUP BY x HAVI NG sun({y) > 3;
X | sum

[
a | 4
b | 5
(2 rows)

=> SELECT x, sun(y) FROMtest1l GROUP BY x HAVING x < 'c';
X | sum

[
a | 4
b | 5
(2 rows)

Again, amore reglistic example:

SELECT product _id, p.name, (sun(s.units) * (p.price - p.cost)) AS
profit
FROM products p LEFT JO N sal es s USI NG (product _id)
WHERE s. date > CURRENT_DATE - | NTERVAL '4 weeks'
GROUP BY product _id, p.nane, p.price, p.cost
HAVI NG sum(p. price * s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the
expression is only true for sales during the last four weeks), while the HAVI NG clause restricts the
output to groupswith total grosssalesover 5000. Notethat the aggregate expressionsdo not necessarily
need to be the samein al parts of the query.

If aquery contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result
is asingle group row (or perhaps no rows at all, if the single row is then eliminated by HAVI NG).
The sameistrueif it contains a HAVI NG clause, even without any aggregate function calls or GROUP
BY clause.

129

Queries

7.2.4. GROUPI NG SETS, CUBE, and ROLLUP

More complex grouping operations than those described above are possible using the concept of
grouping sets. The data selected by the FROM and WHERE clauses is grouped separately by each
specified grouping set, aggregates computed for each group just as for simple GROUP BY clauses,
and then the results returned. For example:

=> SELECT * FROM itens_sol d;
brand | size | sales

_______ e
Foo | L | 10
Foo | M | 20
Bar | M | 15
Bar | L | 5
(4 rows)

=> SELECT brand, size, sun{sales) FROMitens_sold GROUP BY GROUPI NG
SETS ((brand), (size), ());
brand | size | sum

_______ e
Foo | | 30
Bar | | 20

| L | 15

| M | 35

| | 50
(5 rows)

Each sublist of GROUPI NG SETS may specify zero or more columnsor expressions and isinterpreted
the same way as though it were directly in the GROUP BY clause. An empty grouping set means that
all rows are aggregated down to asingle group (which is output even if no input rows were present),
as described above for the case of aggregate functions with no GROUP BY clause.

References to the grouping columns or expressions are replaced by null values in result rows for
grouping setsin which those columns do not appear. To distinguish which grouping a particular output
row resulted from, see Table 9.66.

A shorthand notation is provided for specifying two common types of grouping set. A clause of the
form

ROLLUP (el, e2, e3, ...)

represents the given list of expressions and all prefixes of the list including the empty list; thusit is

equivalent to

GROUPI NG SETS (

(el, e2, e3, ...),
(e, e2),
(el),

()
)

Thisis commonly used for analysis over hierarchical data; e.g., total salary by department, division,
and company-wide total.

A clause of the form

130

Queries

CUBE (el, e2, ...)

represents the given list and al of its possible subsets (i.e., the power set). Thus

CUBE (a, b, c)

isequivalent to

GROUPI NG SETS (
(a b, c),
(a b),
(a, c),
(a),
(b, ¢c),
(b),
(c),
()

)

Theindividual elements of a CUBE or ROLLUP clause may be either individual expressions, or sublists
of elements in parentheses. In the latter case, the sublists are treated as single units for the purposes
of generating the individual grouping sets. For example:

CUBE ((a, b), (c, d))
isequivalent to
GROUPI NG SETS (
(a b, c, d),
(a b)
(c, d),
)

(
)

and

ROLLUP (a, (b, c), d)

is equivalent to

GROUPI NG SETS (

(a b, c, d),
(a b, c),
(a)
()

)

The CUBE and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested
inside a GROUPI NG SETS clause. If one GROUPI NG SETS clause is nested inside another, the
effect isthe same asif all the elements of the inner clause had been written directly in the outer clause.

If multiple grouping items are specified in asingle GROUP BY clause, then the final list of grouping
setsisthe Cartesian product of theindividual items. For example:

131

Queries

GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))

isequivalent to

GROUP BY GROUPI NG SETS (
(a, b, ¢, d, (a, b, c, e),

(a, b, d), (a, b, e),
(a, c, d), (a, c, e),
(a, d), (a, e)

When specifying multiple grouping items together, the final set of grouping sets might contain
duplicates. For example:

GROUP BY ROLLUP (a, b), ROLLUP (a, c)

isequivalent to

GROUP BY GROUPI NG SETS (
(a, b, c),
(a, b),
(a, b),
(a, c),
(a),
(a),
(a, c),
(a),
()

)

If these duplicates are undesirable, they can be removed using the DI STI NCT clause directly on the
GROUP BY. Therefore:

GROUP BY DI STINCT ROLLUP (a, b), ROLLUP (a, c)

isequivalent to

GROUP BY GROUPI NG SETS (
(a, b, c),
(a, b),
(a, ¢,
(a),
()
)

This is not the same as using SELECT DI STI NCT because the output rows may still contain
duplicates. If any of the ungrouped columns contains NULL, it will be indistinguishable from the
NULL used when that same column is grouped.

Note

Theconstruct (a, b) isnormally recognized in expressions as arow constructor. Within the
GROUP BY clause, this does not apply at thetop levels of expressions, and (a, b) isparsed

132

Queries

as alist of expressions as described above. If for some reason you need a row constructor in
agrouping expression, use RON a, b).

7.2.5. Window Function Processing

If the query contains any window functions (see Section 3.5, Section 9.22 and Section 4.2.8), these
functions are evaluated after any grouping, aggregation, and HAVI NGfiltering isperformed. That is, if
the query uses any aggregates, GROUP BY, or HAVI NG then the rows seen by the window functions
are the group rows instead of the original table rows from FROMWHERE.

When multiple window functions are used, all the window functions having equivalent PARTI TI ON
BY and ORDER BY clauses in their window definitions are guaranteed to see the same ordering
of the input rows, even if the ORDER BY does not uniquely determine the ordering. However, no
guarantees are made about the evaluation of functions having different PARTI TI ON BY or ORDER
BY specifications. (In such casesasort stepistypically required between the passes of window function
evaluations, and the sort is not guaranteed to preserve ordering of rows that its ORDER BY sees as
equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered
according to one or another of the window functions' PARTI TI ON BY/ORDER BY clauses. It is not
recommended to rely on this, however. Use an explicit top-level ORDER BY clauseif you want to be
sure the results are sorted in a particular way.

7.3. Select Lists

7.3.1.

As shown in the previous section, the table expression in the SELECT command constructs an
intermediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This
tableisfinally passed on to processing by the select list. The select list determines which columns of
the intermediate table are actually outpuit.

Select-List Items

The simplest kind of select list is * which emits all columns that the table expression produces.
Otherwise, aselect list isacomma-separated list of value expressions (as defined in Section 4.2). For
instance, it could be alist of column names:

SELECT a, b, ¢ FROM ...

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROMclause, or the aliases given to them as explained in Section 7.2.1.2. The name space available
in the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the
same asin the HAVI NGclause.

If more than one table has a column of the same name, the table name must also be given, asin:

SELECT tbl1l.a, tbl2.a, tbll.b FROM...

When working with multipletables, it can also be useful to ask for all the columns of a particular table:

SELECT tbl1.*, tbhl2.a FROM. ..
See Section 8.16.5 for more about thet abl e_nane. * notation.

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row's values

133

Queries

7.3.2.

7.3.3.

substituted for any column references. But the expressions in the select list do not have to reference
any columnsin the table expression of the FROMclause; they can be constant arithmetic expressions,
for instance.

Column Labels

The entriesin the select list can be assigned names for subsequent processing, such as for use in an
CORDER BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM ...

If no output column nameis specified using AS, the system assigns adefault column name. For simple
column references, this is the name of the referenced column. For function calls, thisis the name of
the function. For complex expressions, the system will generate a generic name.

The AS key word is usualy optional, but in some cases where the desired column name matches
a PostgreSQL key word, you must write AS or double-quote the column name in order to avoid
ambiguity. (Appendix C shows which key words require AS to be used as a column label.) For
example, FROMis one such key word, so this does not work:

SELECT a from b + ¢ AS sum FROM . ..
but either of these do:

SELECT a AS from b + ¢ AS sum FROM . ..
SELECT a "from', b + ¢ AS sum FROM ...

For greatest safety against possible future key word additions, it is recommended that you always
either write AS or double-quote the output column name.

Note

The naming of output columns here is different from that done in the FROM clause (see
Section 7.2.1.2). It is possible to rename the same column twice, but the name assigned in the
select list isthe one that will be passed on.

DI STI NCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DI STI NCT key word iswritten directly after SELECT to specify this:

SELECT DI STI NCT sel ect _|i st

(Instead of DI STI NCT the key word ALL can be used to specify the default behavior of retaining
all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values

are considered egual in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

134

Queries

SELECT DI STI NCT ON (expression [, expression ...]) select_list

Here expr essi on is an arbitrary value expression that is evaluated for al rows. A set of rows for
which all the expressions are equal are considered duplicates, and only the first row of the set is kept
in the output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough
columns to guarantee a unique ordering of the rows arriving at the DI STI NCT filter. (DI STI NCT
ON processing occurs after ORDER BY sorting.)

The DI STI NCT ON clause is not part of the SQL standard and is sometimes considered bad style
because of the potentially indeterminate nature of its results. With judicious use of GROUP BY and
subqgueriesin FROM this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries (UNI ON, | NTERSECT,
EXCEPT)

Theresults of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

gueryl UNION [ALL] query?2
gueryl | NTERSECT [ALL] query2
queryl EXCEPT [ALL] query2

where quer y1 and quer y2 are queries that can use any of the features discussed up to this point.

UNI ON effectively appends the result of query2 to the result of quer y1 (athough there is no
guarantee that this is the order in which the rows are actually returned). Furthermore, it eliminates
duplicate rows from its result, in the same way as DI STI NCT, unlessUNI ON ALL is used.

| NTERSECT returns al rows that are both in the result of quer y1 and in the result of quer y2.
Duplicate rows are eliminated unless | NTERSECT ALL isused.

EXCEPT returns all rows that are in the result of quer y1 but not in the result of quer y2. (This
is sometimes called the difference between two queries.) Again, duplicates are eliminated unless
EXCEPT ALL isused.

In order to calculate the union, intersection, or difference of two queries, the two queries must be
“union compatible”, which meansthat they return the same number of columns and the corresponding
columns have compatible data types, as described in Section 10.5.

Set operations can be combined, for example

queryl UNI ON query2 EXCEPT query3

which isequivalent to

(queryl UNI ON query?2) EXCEPT query3

As shown here, you can use parentheses to control the order of evauation. Without parentheses,
UNI ON and EXCEPT associate left-to-right, but | NTERSECT binds more tightly than those two
operators. Thus

queryl UNI ON query2 | NTERSECT query3

means

135

Queries

gueryl UNI ON (query2 | NTERSECT query3)

You can also surround an individual quer y with parentheses. This isimportant if the quer y needs
to use any of the clauses discussed in following sections, such asLI M T. Without parentheses, you'll
get a syntax error, or el se the clause will be understood as applying to the output of the set operation
rather than one of itsinputs. For example,

SELECT a FROM b UNI ON SELECT x FROMy LIMT 10

is accepted, but it means

(SELECT a FROM b UNI ON SELECT x FROMy) LIMT 10

not

SELECT a FROM b UNI ON (SELECT x FROMy LIM T 10)

7.5. Sorting Rows (ORDER BY)

After a query has produced an output table (after the select list has been processed) it can optionally
be sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order
in that case will depend on the scan and join plan types and the order on disk, but it must not berelied
on. A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT sel ect _|i st
FROM t abl e_expressi on
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST |
LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query's select list. An example
is:

SELECT a, b FROM tabl el ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal
according to the earlier values. Each expression can befollowed by an optional ASC or DESC keyword
to set the sort direction to ascending or descending. ASC order is the default. Ascending order puts
smaller valuesfirst, where“smaller” isdefined in terms of the < operator. Similarly, descending order
is determined with the > operator. 1

TheNULLS FI RST and NULLS LAST options can be used to determine whether nulls appear before
or after non-null valuesin the sort ordering. By default, null values sort asif larger than any non-null
value; that is, NULLS FI RST isthe default for DESC order, and NULLS LAST otherwise.

Notethat the ordering optionsare considered independently for each sort column. For example ORDER
BY x, y DESCmeans ORDER BY x ASC, y DESC, which isnot the same as ORDER BY
x DESC, y DESC.

L Actually, PostgreSQL uses the default B-tree operator class for the expression's data type to determine the sort ordering for ASC and DESC.
Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but a user-defined data type's designer
could choose to do something different.

136

Queries

A sort_expressi on can aso be the column label or number of an output column, asin:

SELECT a + b AS sum ¢ FROM tabl el ORDER BY sum
SELECT a, max(b) FROM tablel GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone,
that is, it cannot be used in an expression — for example, thisis not correct:

SELECT a + b AS sum c¢ FROM tabl el ORDER BY sum + c; - -
wWr ong

Thisrestriction is made to reduce ambiguity. Thereisstill ambiguity if an ORDER BY itemisasimple
name that could match either an output column name or a column from the table expression. The
output column is used in such cases. This would only cause confusion if you use AS to rename an
output column to match some other table column's name.

ORDER BY can be applied to the result of a UNI ON, | NTERSECT, or EXCEPT combination, but in
this caseit isonly permitted to sort by output column names or numbers, not by expressions.

7.6. LI M Tand OFFSET

LI M T and OFFSET alow you to retrieve just a portion of the rows that are generated by the rest
of the query:

SELECT sel ect _|i st
FROM t abl e_expr essi on
[ORDER BY ...]
[LIMT { count | ALL }]
[OFFSET start]

If alimit count is given, no more than that many rows will be returned (but possibly fewer, if the
query itself yields fewer rows). LI M T ALL isthe same asomittingtheLl M T clause, asisLIM T
with aNULL argument.

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as
omitting the OFFSET clause, asis OFFSET with aNULL argument.

If both OFFSET and LI M T appear, then OFFSET rows are skipped before starting to count the
LI M T rowsthat are returned.

Whenusing LI M T, it isimportant to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query'srows. Y ou might be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is
unknown, unless you specified ORDER BY.

The query optimizer takes LI M T into account when generating query plans, so you are very likely
to get different plans (yielding different row orders) depending on what you give for LIM T and
OFFSET. Thus, using different LI M T/OFFSET values to select different subsets of a query result
will give inconsistent results unless you enforce a predictable result ordering with ORDER BY. This
isnot abug; it isan inherent consegquence of the fact that SQL does not promise to deliver the results
of aquery in any particular order unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore alarge
OFFSET might be inefficient.

7.7. VALUES Lists

137

Queries

VALUES provides away to generate a“ constant table” that can be used in a query without having to
actually create and populate atable on-disk. The syntax is

VALUES (expression [, ...]1) [, ...]

Each parenthesized list of expressions generates arow in the table. The lists must all have the same
number of elements (i.e., the number of columns in the table), and corresponding entries in each
list must have compatible data types. The actual data type assigned to each column of the result is
determined using the same rules as for UNI ON (see Section 10.5).

Asan example:

VALUES (1, 'one'), (2, '"two'), (3, '"three');

will return atable of two columns and three rows. It's effectively equivalent to:

SELECT 1 AS columil, 'one' AS colum?2
UNI ON ALL

SELECT 2, 'two'

UNI ON ALL

SELECT 3, 'three';

By default, PostgreSQL assigns the names col utm1, col uim2, ete. to the columns of a VALUES
table. The column names are not specified by the SQL standard and different database systems do it
differently, soit's usually better to override the default names with atable aliaslist, like this:

=> SELECT * FROM (VALUES (1, 'one'), (2, 'two'), (3, 'three')) AS't
(numletter);
num| letter

1]

2| two

3| three
(3 rows)

Syntactically, VALUES followed by expression listsis treated as equivalent to:

SELECT sel ect _|ist FROM tabl e_expression

and can appear anywhere a SELECT can. For example, you can useit as part of aUNI ON, or attach a
sort _specificati on(ORDER BY, LI M T, and/or OFFSET) to it. VALUES is most commonly
used as the data source in an | NSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. W THQueries (Common Table
Expressions)

W TH provides away to write auxiliary statements for usein alarger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tables that exist just for one query. Each auxiliary statement in a W TH clause can be a SELECT,
| NSERT, UPDATE, DELETE, or MERGE; and the W THclauseitself isattached to aprimary statement
that can also be a SELECT, | NSERT, UPDATE, DELETE, or MERGE.

138

Queries

7.8.1.

7.8.2.

SELECT in WTH

The basic value of SELECT in W TH is to break down complicated queries into simpler parts. An
exampleis:

W TH regi onal _sal es AS (
SELECT regi on, SUM anount) AS total sales
FROM or ders
GROUP BY region
), top_regions AS (
SELECT regi on
FROM r egi onal _sal es
WHERE total sales > (SELECT SUMtotal sales)/ 10 FROM
regi onal _sal es)
)
SELECT regi on,
product,
SUM quantity) AS product_units,
SUM amount) AS product _sal es
FROM or ders
WHERE regi on I N (SELECT regi on FROM top_regi ons)
GROUP BY region, product;

which displays per-product sales totals in only the top sales regions. The W TH clause defines
two auxiliary statements named r egi onal _sal es and t op_r egi ons, where the output of
regi onal _sal es isused intop_regi ons and the output of t op_r egi ons is used in the
primary SELECT query. This example could have been written without W TH, but we'd have needed
two levels of nested sub-SELECTS. It's a bit easier to follow this way.

Recursive Queries

The optional RECURSI VE modifier changes W TH from a mere syntactic convenience into afeature
that accomplishes things not otherwise possiblein standard SQL . Using RECURSI VE, aW TH query
canrefer toitsown output. A very simple exampleisthisquery to sum theintegersfrom 1 through 100:

W TH RECURSI VE t(n) AS (
VALUES (1)
UNI ON ALL
SELECT n+1 FROMt WHERE n < 100

)
SELECT sunm(n) FROM t;

The general form of arecursive W TH query is always a non-recursive term, then UNI ON (or UNI ON
ALL), then arecursive term, where only the recursive term can contain areference to the query's own
output. Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNI ON (but not UNI ON ALL), discard duplicate rows.
Include al remaining rowsin theresult of the recursive query, and al so place them in atemporary
working table.

2. Solong asthe working tableis not empty, repeat these steps:

a Evaluate the recursive term, substituting the current contents of the working table for the
recursive self-reference. For UNI ON (but not UNI ON ALL), discard duplicate rows and

139

Queries

rows that duplicate any previous result row. Include al remaining rows in the result of the
recursive query, and also place them in atemporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table, then
empty the intermediate table.

Note

While RECURSI VE allows queries to be specified recursively, internally such queries are
evaluated iteratively.

In the example above, the working table has just a single row in each step, and it takes on the values
from 1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE
clause, and so the query terminates.

Recursive queries aretypically used to deal with hierarchical or tree-structured data. A useful example
is this query to find all the direct and indirect sub-parts of a product, given only a table that shows
immediate inclusions:

W TH RECURSI VE i ncl uded_parts(sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part =
' our _product"’
UNI ON ALL
SELECT p.sub_part, p.part, p.quantity * pr.quantity
FROM i ncl uded_parts pr, parts p
VWHERE p. part = pr.sub_part
)
SELECT sub_part, SUMquantity) as total _quantity
FROM i ncl uded_parts
GROUP BY sub_part

7.8.2.1. Search Order

When computing atree traversal using arecursive query, you might want to order the resultsin either
depth-first or breadth-first order. This can be done by computing an ordering column alongside the
other datacolumns and using that to sort theresults at the end. Note that thisdoesnot actually control in
which order the query evaluation visits the rows; that is as alwaysin SQL implementati on-dependent.
This approach merely provides a convenient way to order the results afterwards.

To create adepth-first order, we compute for each result row an array of rows that we have visited so
far. For example, consider the following query that searchesatablet r ee usingal i nk field:

W TH RECURSI VE search_tree(id, link, data) AS (
SELECT t.id, t.link, t.data
FROM tree t
UNI ON ALL
SELECT t.id, t.link, t.data
FROMtree t, search_tree st
WHERE t.id = st.link

)
SELECT * FROM search_tree;

To add depth-first ordering information, you can write this:

140

Queries

W TH RECURSI VE search_tree(id, link, data, path) AS (
SELECT t.id, t.link, t.data, ARRAY[t.id]
FROM tree t
UNI ON ALL
SELECT t.id, t.link, t.data, path || t.id
FROM tree t, search_tree st
WHERE t.id = st.link

)
SELECT * FROM search_tree ORDER BY pat h;

In the general case where more than one field needs to be used to identify arow, use an array of rows.
For example, if we needed to track fieldsf 1 and f 2:

W TH RECURSI VE search_tree(id, link, data, path) AS (
SELECT t.id, t.link, t.data, ARRAY[ROWNt.f1, t.f2)]
FROM tree t

UNI ON ALL
SELECT t.id, t.link, t.data, path || RONt.f1l, t.f2)
FROMtree t, search _tree st
WHERE t.id = st.link

)
SELECT * FROM search_tree ORDER BY pat h;

Tip

Omit the ROA() syntax in the common case where only one field needs to be tracked. This
allows asimple array rather than a composite-type array to be used, gaining efficiency.

To create a breadth-first order, you can add a column that tracks the depth of the search, for example:

W TH RECURSI VE search_tree(id, link, data, depth) AS (
SELECT t.id, t.link, t.data, O
FROM tree t
UNI ON ALL
SELECT t.id, t.link, t.data, depth + 1
FROMtree t, search_tree st
WHERE t.id = st.link

)
SELECT * FROM search_tree ORDER BY dept h;

To get a stable sort, add data columns as secondary sorting columns.

Tip

The recursive query evaluation algorithm produces its output in breadth-first search order.
However, thisis an implementation detail and it is perhaps unsound to rely on it. The order of
the rows within each level is certainly undefined, so some explicit ordering might be desired
in any case.

Thereis built-in syntax to compute a depth- or breadth-first sort column. For example:

W TH RECURSI VE search_tree(id, link, data) AS (

141

Queries

SELECT t.id, t.link, t.data
FROM tree t
UNI ON ALL

SELECT t.id, t.link, t.data

FROM tree t, search_tree st

WHERE t.id = st.link
) SEARCH DEPTH FI RST BY id SET ordercol
SELECT * FROM search_tree ORDER BY ordercol;

W TH RECURSI VE search_tree(id, link, data) AS (

SELECT t.id, t.link, t.data

FROM tree t

UNI ON ALL

SELECT t.id, t.link, t.data

FROM tree t, search_tree st

WHERE t.id = st.link
) SEARCH BREADTH FI RST BY id SET ordercol
SELECT * FROM search_tree ORDER BY ordercol;

Thissyntax isinternally expanded to something similar to the above hand-written forms. The SEARCH
clause specifieswhether depth- or breadth first search iswanted, thelist of columnsto track for sorting,
and a column name that will contain the result data that can be used for sorting. That column will
implicitly be added to the output rows of the CTE.

7.8.2.2. Cycle Detection

When working with recursive queriesit isimportant to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNI ON instead
of UNI ON ALL can accomplish thisby discarding rowsthat duplicate previous output rows. However,
often a cycle does not involve output rows that are completely duplicate: it may be necessary to check
just one or afew fields to see if the same point has been reached before. The standard method for
handling such situations is to compute an array of the already-visited values. For example, consider
again the following query that searches atable gr aph using al i nk field:

W TH RECURSI VE search_graph(id, |ink, data, depth) AS (
SELECT g.id, g.link, g.data, O
FROM gr aph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
)
SELECT * FROM search_graph;

This query will loop if thel i nk relationships contain cycles. Because we require a “depth” output,
just changing UNI ON ALL to UNI ON would not eliminate the looping. Instead we need to recognize
whether we have reached the same row again while following a particular path of links. We add two
columnsi s_cycl e and pat h to the loop-prone query:

W TH RECURSI VE search_graph(id, link, data, depth, is_cycle, path)

AS (
SELECT g.id, g.link, g.data, O,
fal se,
ARRAY[g. i d]
FROM gr aph g
UNI ON ALL

SELECT g.id, g.link, g.data, sg.depth + 1,

142

Queries

g.id = ANY(path),
path || g.id
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT is_cycle
)
SELECT * FROM search_graph;

Asidefrom preventing cycles, the array valueis often useful in its own right as representing the “ path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array
of rows. For example, if we needed to compare fieldsf 1 and f 2:

W TH RECURSI VE search_graph(id, link, data, depth, is_cycle, path)
AS (
SELECT g.id, g.link, g.data, O,
fal se,
ARRAY[RON(g. f1, g.f2)]
FROM gr aph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
RONg.f1, g.f2) = ANY(path),
path || RONg.f1, g.f2)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT is_cycle
)
SELECT * FROM sear ch_graph;

Tip

Omit the RON) syntax in the common case where only one field needs to be checked to
recognhize a cycle. This alows a simple array rather than a composite-type array to be used,
gaining efficiency.

Thereis built-in syntax to simplify cycle detection. The above query can also be written like this:

W TH RECURSI VE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM gr aph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
) CYCLE id SET is_cycle USING path
SELECT * FROM sear ch_gr aph;

and it will be internally rewritten to the above form. The CYCLE clause specifies first the list of
columns to track for cycle detection, then a column name that will show whether a cycle has been
detected, and finally the name of another column that will track the path. The cycle and path columns
will implicitly be added to the output rows of the CTE.

Tip

Thecycle path columniscomputed in the sameway asthe depth-first ordering column show in
the previous section. A query can have both a SEARCH and a CYCLE clause, but adepth-first

143

Queries

7.8.3.

search specification and a cycle detection specification would create redundant computations,
so it's more efficient to just use the CYCLE clause and order by the path column. If breadth-
first ordering is wanted, then specifying both SEARCH and CYCLE can be useful.

A helpful trick for testing queries when you are not certain if they might loop isto placeaLl M T in
the parent query. For example, this query would loop forever without theLI M T:

W TH RECURSI VE t(n) AS (
SELECT 1
UNI ON ALL
SELECT n+1 FROM t

)
SELECT n FROMt LIMT 100;

This works because PostgreSQL 's implementation evaluates only as many rows of a W TH query as
are actually fetched by the parent query. Using this trick in production is not recommended, because
other systems might work differently. Also, it usually won't work if you make the outer query sort the
recursive query's results or join them to some other table, because in such cases the outer query will
usually try to fetch all of the W TH query's output anyway.

Common Table Expression Materialization

A useful property of W TH queriesis that they are normally evaluated only once per execution of the
parent query, even if they are referred to more than once by the parent query or sibling W TH queries.
Thus, expensive calculations that are needed in multiple places can be placed within a W TH query
to avoid redundant work. Another possible application is to prevent unwanted multiple evaluations
of functions with side-effects. However, the other side of this coin is that the optimizer is not able to
push restrictions from the parent query down into a multiply-referenced W TH query, since that might
affect al uses of the W TH query's output when it should affect only one. The multiply-referenced
W TH query will be evaluated as written, without suppression of rows that the parent query might
discard afterwards. (But, as mentioned above, evaluation might stop early if the reference(s) to the
guery demand only alimited number of rows.)

However, if aW TH query is non-recursive and side-effect-free (that is, it is a SELECT containing
no volatile functions) then it can be folded into the parent query, allowing joint optimization of
the two query levels. By default, this happens if the parent query references the W TH query just
once, but not if it references the W TH query more than once. You can override that decision by
specifying MATERI ALI ZED to force separate calculation of the W TH query, or by specifying NOT
MATERI ALI ZED to force it to be merged into the parent query. The latter choice risks duplicate
computation of the W TH query, but it can still give a net savings if each usage of the W TH query
needs only asmall part of the W TH query's full output.

A simple example of theserulesis
WTH w AS (

SELECT * FROM big_table
)

SELECT * FROM w WHERE key = 1283;

ThisW TH query will be folded, producing the same execution plan as

SELECT * FROM bi g_tabl e WHERE key = 123;

In particular, if there's an index on key, it will probably be used to fetch just the rows having key
= 123. Onthe other hand, in

144

Queries

7.8.4.

WTH w AS (
SELECT * FROM bi g_tabl e
)
SELECT * FROMw AS wl JO N w AS w2 ON wl. key = w2.ref
WHERE W2. key = 123;

the W TH query will be materialized, producing atemporary copy of bi g_t abl e that isthen joined
with itself — without benefit of any index. This query will be executed much more efficiently if
written as

W TH w AS NOT MATERI ALI ZED (
SELECT * FROM bi g_tabl e
)

SELECT * FROMw AS w1 JO N w AS w2 ON wl. key = w2.ref
VWHERE w2. key = 123;

so that the parent query's restrictions can be applied directly to scans of bi g_t abl e.

An example where NOT MATERI ALI ZED could be undesirable is

WTH w AS (
SELECT key, very_expensive_function(val) as f FROM sone_t abl e
)

SELECT * FROMw AS w1 JON w AS w2 ON wl.f = w2.f;

Here, materialization of the W TH query ensuresthat ver y_expensi ve_functi on isevauated
only once per table row, not twice.

The examples above only show W THbeing used with SELECT, but it can be attached in the same way
to | NSERT, UPDATE, DELETE, or MERGE. In each case it effectively provides temporary table(s)
that can be referred to in the main command.

Data-Modifying Statements in W TH

You can use data-modifying statements (I NSERT, UPDATE, DELETE, or MERGE) in W TH. This
allowsyou to perform several different operations in the same query. An exampleis:

W TH noved_rows AS (
DELETE FROM products
VWHERE
"date" >= '2010-10-01' AND
"date" < '2010-11-01"
RETURNI NG *
)
I NSERT | NTO products_| og
SELECT * FROM noved_rows;

This query effectively moves rows from pr oduct s to products_| og. The DELETE in W TH
deletes the specified rows from pr oduct s, returning their contents by means of its RETURNI NG
clause; and then the primary query reads that output and insertsit into pr oduct s_| og.

A fine point of the above example is that the W TH clause is attached to the | NSERT, not the sub-
SELECT within the | NSERT. Thisis necessary because data-modifying statements are only allowed
in W TH clauses that are attached to the top-level statement. However, normal W TH visibility rules
apply, so it is possible to refer to the W TH statement's output from the sub-SELECT.

145

Queries

Data-modifying statements in W TH usually have RETURNI NG clauses (see Section 6.4), as shown
in the example above. It is the output of the RETURNI NG clause, not the target table of the data-
modifying statement, that forms the temporary table that can be referred to by the rest of the query.
If adata-modifying statement in W TH lacks a RETURNI NG clause, then it forms no temporary table
and cannot be referred to in the rest of the query. Such a statement will be executed nonetheless. A
not-particularly-useful exampleis:

WTH t AS (
DELETE FROM f 00
)

DELETE FROM bar ;

Thisexamplewould removeal rowsfromtablesf oo and bar . The number of affected rowsreported
to the client would only include rows removed from bar .

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible
to work around this limitation by referring to the output of arecursive W TH, for example:

W TH RECURSI VE i ncl uded_parts(sub_part, part) AS (
SELECT sub_part, part FROM parts WHERE part = 'our_product’
UNI ON ALL
SELECT p. sub_part, p.part
FROM i ncl uded_parts pr, parts p
WHERE p. part = pr.sub_part
)
DELETE FROM parts
WHERE part |IN (SELECT part FROM i ncl uded_parts);

This query would remove al direct and indirect subparts of a product.

Data-modifying statements in W TH are executed exactly once, and always to completion,
independently of whether the primary query reads al (or indeed any) of their output. Notice that thisis
different from therulefor SELECT in W TH: as stated in the previous section, execution of aSELECT
iscarried only as far asthe primary query demands its output.

The sub-statements in W TH are executed concurrently with each other and with the main query.
Therefore, when using data-modifying statementsin W TH, the order in which the specified updates
actually happen is unpredictable. All the statements are executed with the same snapshot (see
Chapter 13), so they cannot “se€” one another's effects on the target tables. This alleviates the effects
of the unpredictability of the actual order of row updates, and means that RETURNI NG data is the
only way to communicate changes between different W TH sub-statements and the main query. An
example of thisisthat in

WTH t AS (
UPDATE products SET price = price * 1.05
RETURNI NG *

)
SELECT * FROM products;

the outer SELECT would return the original prices before the action of the UPDATE, whilein

WTH t AS (
UPDATE products SET price = price * 1.05
RETURNI NG *

)
SELECT * FROM t;

146

Queries

the outer SELECT would return the updated data.

Trying to update the same row twice in a single statement is not supported. Only one of the
modificationstakes place, but it isnot easy (and sometimes not possible) to reliably predict which one.
This also applies to deleting a row that was already updated in the same statement: only the update
is performed. Therefore you should generally avoid trying to modify a single row twice in a single
statement. In particular avoid writing W TH sub-statementsthat coul d affect the same rows changed by
the main statement or a sibling sub-statement. The effects of such a statement will not be predictable.

At present, any table used as the target of a data-modifying statement in W TH must not have a
conditional rule, nor an ALSOrule, nor an | NSTEAD rule that expands to multiple statements.

147

Chapter 8. Data Types

PostgreSQL has a rich set of native data types available to users. Users can add new types to
PostgreSQL using the CREATE TY PE command.

Table 8.1 shows al the built-in general-purpose data types. Most of the aternative names listed in

the“Aliases’ column are the names used internally by PostgreSQL for historical reasons. In addition,
some internally used or deprecated types are available, but are not listed here.

Table8.1. Data Types

Name Aliases Description
bi gi nt int8 signed eight-byte integer
bi gseri al serial8 autoincrementing eight-byte integer
bit [(n)] fixed-length bit string
bit varying [(n)] var bi t variable-length bit string
[(n)]
bool ean bool logical Boolean (true/false)
box rectangular box on aplane
byt ea binary data (“byte array”)
character [(n)] char [(n)] |fixed-length character string
character varying [(n)] |varchar variable-length character string
[(n)]
cidr IPv4 or |Pv6 network address
circle circleon aplane
date calendar date (year, month, day)
doubl e precision float8 double precision floating-point
number (8 bytes)
i net IPv4 or |Pv6 host address
i nteger int,int4 signed four-byte integer
interval [fields] time span
[(p)]
j son textual JSON data
j sonb binary JSON data, decomposed
I'ine infinite line on a plane
| seg line segment on a plane
macaddr MAC (Media Access Control) address
macaddr 8 MAC (Media Access Control) address
(EUI-64 format)
noney currency amount
nuneric [(p, s)] deci nal exact numeric of selectable precision
[(p, s)]
pat h geometric path on aplane
pg_l sn PostgreSQL Log Sequence Number
pg_shapshot user-level transaction 1D snapshot
poi nt geometric point on aplane

148

Data Types

Name Aliases Description

pol ygon closed geometric path on aplane

r eal float4 single precision floating-point number
(4 bytes)

smal | i nt int2 signed two-byte integer

smal | seri al serial 2 autoincrementing two-byte integer

seri al serial4 autoi ncrementing four-byte integer

t ext variable-length character string

time [(p) 1 [wthout
tinme zone]

time of day (no time zone)

time [(p)] with tine timetz
zone

time of day, including time zone

timestanp [(p)]
[without tine zone]

date and time (no time zone)

timestanp [(p)] with ti mestanptz |dateandtime, including time zone
tinme zone

t squery text search query

t svect or text search document

t xi d_snapshot

user-level transaction 1D snapshot
(deprecated; see pg_snapshot)

uui d

universally unique identifier

xm

XML data

Compatibility

The following types (or spellings thereof) are specified by SQL: bi gint, bit, bit
varyi ng, bool ean, char, character varying, character, varchar, date,
doubl e precision,integer,interval ,nuneric,deci mal ,real,smallint,
t i me (with or without time zone), t i nest anp (with or without time zone), xn .

Each datatype has an external representation determined by itsinput and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to PostgreSQL,
such as geometric paths, or have several possible formats, such asthe date and time types. Some of the
input and output functions are not invertible, i.e., the result of an output function might lose accuracy

when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point

numbers, and selectable-precision decimals. Table 8.2 lists the available types.

Table 8.2. Numeric Types

Name Storage Size|Description Range

smal | i nt 2 bytes small-range integer -32768 to +32767

i nteger 4 bytes typical choicefor integer |-2147483648 to
+2147483647

bi gi nt 8 bytes large-range integer -9223372036854775808 to
+9223372036854775807

149

Data Types

8.1.1.

8.1.2.

Name Storage Size|Description Range
deci mal variable user-specified precision, |up to 131072 digits before
exact the decimal point; up to
16383 digits after the
decimal point
nuneric variable user-specified precision, |up to 131072 digits before
exact the decimal point; up to
16383 digits after the
decimal point
r eal 4 bytes variable-precision, inexact |6 decimal digits precision
doubl e precision 8 bytes variable-precision, inexact |15 decimal digits precision
smal | seri al 2 bytes small autoincrementing 1to 32767
integer
seri al 4 bytes autoincrementing integer | 1 to 2147483647
bi gseri al 8 bytes large autoincrementing 1lto
integer 9223372036854775807

The syntax of constants for the numeric typesis described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for moreinformation.
The following sections describe the typesin detail.

Integer Types

The types snal | i nt, i nt eger, and bi gi nt store whole numbers, that is, humbers without
fractional components, of various ranges. Attempts to store values outside of the allowed range will
result in an error.

Thetypei nt eger isthecommon choice, asit offersthe best balance between range, storage size, and
performance. Thesmal | i nt typeisgenerally only used if disk spaceisat apremium. Thebi gi nt
type is designed to be used when the range of thei nt eger typeisinsufficient.

SQL only specifiestheinteger typesi nt eger (ori nt),smal | i nt,andbi gi nt . Thetype names
int2,int4,andi nt 8 are extensions, which are also used by some other SQL database systems.

Arbitrary Precision Numbers

Thetypenuner i ¢ canstorenumberswith avery large number of digits. Itisespecially recommended
for storing monetary amounts and other quantities where exactness is required. Calculations with
nuneri c vaues yield exact results where possible, e.g., addition, subtraction, multiplication.
However, calculations on nuner i ¢ values are very slow compared to the integer types, or to the
floating-point types described in the next section.

We usethefollowing termsbelow: The precision of anuner i ¢ isthetotal count of significant digits
in the whole number, that is, the number of digits to both sides of the decimal point. The scale of a
nuner i ¢ isthe count of decimal digitsin the fractional part, to the right of the decimal point. So the
number 23.5141 hasaprecision of 6 and ascale of 4. Integers can be considered to have ascale of zero.

Both the maximum precision and the maximum scale of anurrer i ¢ column can be configured. To
declare acolumn of type nuner i ¢ use the syntax:
NUMERI C(pr eci si on, scal e)

The precision must be positive, while the scale may be positive or negative (see below). Alternatively:

150

Data Types

NUMERI C(pr eci si on)

selects ascale of 0. Specifying:

NUMERI C

without any precision or scale creates an “unconstrained numeric” column in which numeric values
of any length can be stored, up to the implementation limits. A column of this kind will not coerce
input values to any particular scale, whereas nuner i ¢ columns with a declared scale will coerce
input values to that scale. (The SQL standard requires a default scale of O, i.e., coercion to integer
precision. Wefind thisabit useless. If you're concerned about portability, always specify the precision
and scale explicitly.)

Note

The maximum precision that can be explicitly specified in a nuner i ¢ type declaration is
1000. An unconstrained nunrer i ¢ column is subject to the limits described in Table 8.2.

If the scale of avalue to be stored is greater than the declared scale of the column, the system will
round the value to the specified number of fractional digits. Then, if the number of digits to the left
of the decimal point exceeds the declared precision minus the declared scale, an error is raised. For
example, acolumn declared as

NUMERI C(3, 1)
will round values to 1 decimal place and can store values between -99.9 and 99.9, inclusive.

Beginning in PostgreSQL 15, it isallowed to declareanumer i ¢ column with anegative scale. Then
values will be rounded to the left of the decimal point. The precision still represents the maximum
number of non-rounded digits. Thus, a column declared as

NUMERI C(2, -3)

will round values to the nearest thousand and can store val ues between -99000 and 99000, inclusive.
It is also allowed to declare a scale larger than the declared precision. Such a column can only hold
fractional values, and it requires the number of zero digits just to the right of the decimal point to be
at least the declared scale minus the declared precision. For example, a column declared as

NUVERI (3, 5)

will round values to 5 decimal places and can store values between -0.00999 and 0.00999, inclusive.

Note

PostgreSQL permits the scale in anuner i ¢ type declaration to be any value in the range
-1000 to 1000. However, the SQL standard requires the scale to be in the range 0 to
pr eci si on. Using scales outside that range may not be portable to other database systems.

Numeric values are physically stored without any extraleading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the nuneri ¢
typeismore akin to var char (n) thanto char (n) .) The actual storage requirement is two bytes
for each group of four decimal digits, plus three to eight bytes overhead.

151

Data Types

In addition to ordinary numeric values, the nuner i ¢ type has several special values:

Infinity
-Infinity
NaN

" ow

These are adapted from the IEEE 754 standard, and represent “infinity”, “ negative infinity”, and “ not-
a-number”, respectively. When writing these values as constants in an SQL command, you must put

quotes around them, for example UPDATE table SET x = '-Infinity'.Oninput, these
strings are recognized in a case-insensitive manner. The infinity values can aternatively be spelled
inf and-i nf.

Theinfinity values behave as per mathematical expectations. For example, | nf i ni t y plusany finite
valueequalsI nfinity,asdoesInfinity plusinfinity;butlnfinity mnusinfinity
yields NaN (not anumber), because it has no well-defined interpretation. Note that an infinity can only
be stored in an unconstrained numner i ¢ column, because it notionally exceeds any finite precision
limit.

The NaN (not a number) value is used to represent undefined calculational results. In general, any
operation with aNaNinput yieldsanother NaN. The only exception iswhen the operation's other inputs
are such that the same output would be obtained if the NaNwere to be replaced by any finite or infinite
numeric value; then, that output value is used for NaN too. (An example of this principle is that NaN
raised to the zero power yields one.)

Note

In most implementations of the “not-a-number” concept, NaN is not considered equal to any
other numeric value (including NaN). In order to allow nuner i ¢ valuesto be sorted and used
in tree-based indexes, PostgreSQL treats NaN values as equal, and greater than all non-NaN
values.

Thetypesdeci mal and nuneri ¢ are equivaent. Both types are part of the SQL standard.

When rounding values, the nuner i ¢ type roundsties away from zero, while (on most machines) the
real anddoubl e preci si on typesround tiesto the nearest even number. For example:

SELECT x,

round(x: : numeric) AS num round,

round(x: : doubl e precision) AS dbl_round
FROM generate_series(-3.5, 3.5, 1) as x;

X | numround | dbl _round
______ o
-3.5 | -4 | -4
-2.5 | -3 | -2
-1.5 | -2 | -2
-0.5 | -1 | -0

0.5 | 1] 0

1.5 2| 2

2.5 | 3 2

3.5 | 4 | 4
(8 rows)

8.1.3. Floating-Point Types

152

Data Types

The datatypesr eal and doubl e preci si on areinexact, variable-precision numeric types. On
all currently supported platforms, these types are implementations of |1EEE Standard 754 for Binary
Floating-Point Arithmetic (single and double precision, respectively), to the extent that the underlying
processor, operating system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and retrieving avalue might show slight discrepancies. Managing these
errors and how they propagate through calculations is the subject of an entire branch of mathematics
and computer science and will not be discussed here, except for the following points:

* If you require exact storage and calculations (such as for monetary amounts), use the nuneri c
type instead.

 If you want to do complicated calculations with these types for anything important, especially
if you rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the
implementation carefully.

» Comparing two floating-point values for equality might not always work as expected.

On all currently supported platforms, the r eal type has a range of around 1E-37 to 1E+37 with a
precision of at least 6 decimal digits. Thedoubl e pr eci si on type has arange of around 1E-307
to 1E+308 with a precision of at least 15 digits. Values that are too large or too small will cause an
error. Rounding might take place if the precision of an input number is too high. Numbers too close
to zero that are not representable as distinct from zero will cause an underflow error.

By default, floating point values are output in text formin their shortest precise decimal representation;
the decima value produced is closer to the true stored binary value than to any other value
representable in the same binary precision. (However, the output value is currently never exactly
midway between two representable values, in order to avoid awidespread bug where input routines do
not properly respect the round-to-nearest-even rule.) Thisvaluewill use at most 17 significant decimal
digitsfor f | oat 8 values, and at most 9 digitsfor f | oat 4 values.

Note

This shortest-precise output format is much faster to generate than the historical rounded
format.

For compatibility with output generated by older versions of PostgreSQL, and to allow the output
precision to be reduced, the extra_float_digits parameter can be used to select rounded decimal output
instead. Setting a value of 0O restores the previous default of rounding the value to 6 (for f | oat 4)
or 15 (for f | oat 8) significant decimal digits. Setting a negative value reduces the number of digits
further; for example -2 would round output to 4 or 13 digits respectively.

Any value of extra float_digits greater than O selects the shortest-precise format.

Note

Applications that wanted precise values have historically had to set extra float_digitsto 3 to
obtain them. For maximum compatibility between versions, they should continue to do so.

In addition to ordinary numeric values, the floating-point types have several specia values:

Infinity
-Infinity
NaN

153

Data Types

8.1.4.

These represent the IEEE 754 specia values “infinity”, “negative infinity”, and “not-a-number”,
respectively. When writing these values as constantsin an SQL command, you must put quotes around
them, for example UPDATE table SET x = '-Infinity'. On input, these strings are
recognized in a case-insensitive manner. The infinity values can alternatively be spelled i nf and -
inf.

Note

IEEE 754 specifies that NaN should not compare equal to any other floating-point value
(including NaN). In order to alow floating-point values to be sorted and used in tree-based
indexes, PostgreSQL treats NaN values as equal, and greater than all non-NaN values.

PostgreSQL also supports the SQL-standard notationsf | oat andf | oat (p) for specifying inexact
numeric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL
acceptsf | oat (1) tof | oat (24) assdlectingther eal type, whilef | oat (25) tof | oat (53)
select doubl e preci si on. Vauesof p outside the allowed range draw an error. f | oat with no
precision specified is taken to mean doubl e pr eci si on.

Serial Types

Note

This section describes a PostgreSQL -specific way to create an autoincrementing column.
Another way is to use the SQL -standard identity column feature, described at Section 5.3.

Thedatatypessnal | seri al ,seri al andbi gseri al arenottruetypes, but merely anotational
convenience for creating unique identifier columns (similar to the AUTO | NCREMENT property
supported by some other databases). In the current implementation, specifying:

CREATE TABLE t abl enane (
col name SERI AL

)
is equivalent to specifying:

CREATE SEQUENCE t abl enanme_col nanme_seq AS i nteger;
CREATE TABLE t abl enane (

col name i nteger NOT NULL DEFAULT
nextval (' tabl enanme_col nane_seq')

) y
ALTER SEQUENCE t abl enane_col nane_seq OANED BY t abl enane. col nane;

Thus, we have created an integer column and arranged for its default values to be assigned from a
sequence generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted.
(In most cases you would also want to attach a UNI QUE or PRI MARY KEY constraint to prevent
duplicate values from being inserted by accident, but this is not automatic.) Lastly, the sequence is
marked as “owned by” the column, so that it will be dropped if the column or table is dropped.

Note

Becausesnal | seri al ,seri al andbi gseri al areimplemented using sequences, there
may be"holes" or gapsin the sequence of values which appearsin the column, even if no rows

154

Data Types

areever deleted. A valueallocated from the sequenceisstill "used up" evenif arow containing
that value is never successfully inserted into the table column. This may happen, for example,
if the inserting transaction rolls back. See next val () in Section 9.17 for details.

To insert the next value of the sequenceintotheseri al column, specify that theseri al column
should be assigned its default value. This can be done either by excluding the column from the list of
columnsin the | NSERT statement, or through the use of the DEFAULT key word.

The type names seri al and seri al 4 are equivalent: both create i nt eger columns. The type
names bi gseri al andseri al 8 work the same way, except that they create abi gi nt column.
bi gseri al should be used if you anticipate the use of more than 23t identifiers over the lifetime of
thetable. Thetype namessnal | seri al andseri al 2 also work the same way, except that they
createasmal | i nt column.

The sequence created for aseri al column is automatically dropped when the owning column is
dropped. Y ou can drop the sequence without dropping the column, but this will force removal of the
column default expression.

8.2. Monetary Types

The noney type stores a currency amount with a fixed fractional precision; see Table 8.3. The
fractional precision is determined by the database'sIc_monetary setting. The range shown in the table
assumes there are two fractional digits. Input is accepted in a variety of formats, including integer
and floating-point literals, as well astypical currency formatting, suchas' $1, 000. 00" . Output is
generaly in the latter form but depends on the locale.

Table 8.3. Monetary Types

Name Storage Size|Description Range

noney 8 bytes currency amount -92233720368547758.08
to
+92233720368547758.07

Since the output of this data type is locale-sensitive, it might not work to load noney data into a
database that has a different setting of | c_nonet ar y. To avoid problems, before restoring a dump
into a new database make sure | ¢_nonet ar y has the same or equivalent value as in the database
that was dumped.

Vadues of thenuneri c,i nt, and bi gi nt datatypes can be cast to roney. Conversion from the
real anddoubl e preci si on datatypescan be done by castingto nuner i c first, for example:

SELECT ' 12.34'::float8::numeric::noney;

However, thisis not recommended. Floating point numbers should not be used to handle money due
to the potential for rounding errors.

A noney value can be cast to nurrer i ¢ without loss of precision. Conversion to other types could
potentially lose precision, and must also be done in two stages:

SELECT ' 52093. 89' : : noney: : nuneric:: fl oat8;

Division of a noney value by an integer value is performed with truncation of the fractional part
towards zero. To get a rounded result, divide by a floating-point value, or cast the noney value to
nuner i ¢ before dividing and back to noney afterwards. (The latter is preferable to avoid risking
precision loss.) When a noney value is divided by another noney value, the result is doubl e
pr eci si on (i.e., apure number, not money); the currency units cancel each other out inthedivision.

155

Data Types

8.3. Character Types

Table 8.4. Character Types

Name Description

character varying(n),varchar(n) variable-length with limit
character(n),char(n),bpchar(n) fixed-length, blank-padded
bpchar variable unlimited length, blank-trimmed

t ext variable unlimited length

Table 8.4 shows the general -purpose character types available in PostgreSQL .

SQL definestwo primary character types. char act er varyi ng(n) andchar act er (n) , where
n isapositive integer. Both of these types can store strings up to n characters (not bytes) inlength. An
attempt to store alonger string into a column of these types will result in an error, unless the excess
characters are all spaces, in which case the string will be truncated to the maximum length. (This
somewhat bizarre exception isrequired by the SQL standard.) However, if one explicitly castsavalue
tocharact er varyi ng(n) orcharact er (n),then an over-length value will be truncated to
n characters without raising an error. (This too is required by the SQL standard.) If the string to be
stored is shorter than the declared length, values of type char act er will be space-padded; values
of typechar act er varyi ng will simply store the shorter string.

In addition, PostgreSQL provides the t ext type, which stores strings of any length. Although the
t ext typeisnot in the SQL standard, severa other SQL database management systems have it as
well. t ext isPostgreSQL's native string datatype, in that most built-in functions operating on strings
are declared to take or returnt ext not char act er varyi ng. For many purposes, char act er
varyi ng acts asthough it were adomain over t ext .

The type name var char is an dias for charact er varyi ng, while bpchar (with length
specifier) and char arediasesfor char act er. Thevar char andchar aiasesaredefinedinthe
SQL standard; bpchar isaPostgreSQL extension.

If specified, the length n must be greater than zero and cannot exceed 10,485,760. If char act er
varyi ng (or var char) is used without length specifier, the type accepts strings of any length.
If bpchar lacks a length specifier, it also accepts strings of any length, but trailing spaces
are semantically insignificant. If character (or char) lacks a specifier, it is equivalent to
character(1).

Values of type char act er are physically padded with spaces to the specified width n, and are
stored and displayed that way. However, trailing spaces are treated as semantically insignificant and
disregarded when comparing two values of type char act er . In collations where whitespace is
significant, this behavior can produce unexpected results; for example SELECT 'a ' :: CHAR(2)

collate "C'" < E a\n'::CHAR(2) returnstrue, even though Clocale would consider a space
to be greater than a newline. Trailing spaces are removed when converting a char act er value to
one of the other string types. Note that trailing spaces are semantically significant in char act er

varyi ng andt ext values, and when using pattern matching, that isL1 KE and regular expressions.

Thecharactersthat can be stored in any of these datatypesare determined by the database character set,
which is selected when the database is created. Regardless of the specific character set, the character
with code zero (sometimes called NUL) cannot be stored. For more information refer to Section 23.3.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actua string, which
includesthe space paddinginthecaseof char act er . Longer stringshave4 bytes of overhead instead
of 1. Long strings are compressed by the system automatically, so the physical requirement on disk
might be less. Very long values are also stored in background tables so that they do not interfere with
rapid access to shorter column values. In any case, the longest possible character string that can be

156

Data Types

stored isabout 1 GB. (The maximum valuethat will beallowed for n inthe datatype declarationisless
than that. It wouldn't be useful to change this because with multibyte character encodings the number
of characters and bytes can be quite different. If you desire to store long strings with no specific upper
limit, use t ext or character varyi ng without a length specifier, rather than making up an
arbitrary length limit.)

Tip

There is no performance difference among these three types, apart from increased storage
space when using the blank-padded type, and a few extra CPU cycles to check the length
when storing into a length-constrained column. While char act er (n) has performance
advantages in some other database systems, there is no such advantage in PostgreSQL ; in fact
char act er (n) isusualy the slowest of the three because of its additional storage costs. In
most situationst ext or char act er varyi ng should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for
information about available operators and functions.

Example 8.1. Using the Character Types

CREATE TABLE testl (a character(4));
| NSERT | NTO test1 VALUES (' ok');

SELECT a, char_length(a) FROMtestl; --
a | char _length

______ e e e e e e e m - -

ok | 2

CREATE TABLE test2 (b varchar(5));

| NSERT | NTO test2 VALUES (' ok');

| NSERT | NTO test2 VALUES (' good ");

| NSERT | NTO test2 VALUES ('too long');

ERROR: value too long for type character varying(5)

I NSERT | NTO test2 VALUES ('too long' ::varchar(5)); -- explicit
truncation

SELECT b, char_Iength(b) FROMtest2;

b | char _length
_______ e e e e e e e m - -
ok | 2
good | 5
too | | 5

Thechar _| engt h function is discussed in Section 9.4.

There are two other fixed-length character types in PostgreSQL, shown in Table 8.5. These are not
intended for general-purpose use, only for use in the internal system catalogs. The nane typeisused
to store identifiers. Its length is currently defined as 64 bytes (63 usable characters plus terminator)
but should be referenced using the constant NAMEDATALEN in C source code. The length is set at
compiletime (and is therefore adjustable for specia uses); the default maximum length might change
inafuturerelease. Thetype" char " (notethe quotes) isdifferent fromchar (1) inthat it only uses
one byte of storage, and therefore can store only a single ASCII character. It is used in the system
catalogs as a simplistic enumeration type.

157

Data Types

Table 8.5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type
nane 64 bytes internal type for object names

8.4. Binary Data Types

8.4.1.

8.4.2.

The byt ea datatype allows storage of binary strings; see Table 8.6.

Table 8.6. Binary Data Types

Name Storage Size Description

byt ea 1 or 4 bytes plus the actual binary string variable-length binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character
stringsin two ways. First, binary strings specifically allow storing octets of value zero and other “non-
printable” octets (usualy, octets outside the decimal range 32 to 126). Character strings disallow zero
octets, and also disallow any other octet values and sequences of octet valuesthat areinvalid according
to the database's selected character set encoding. Second, operations on binary strings process the
actual bytes, whereas the processing of character strings depends on locale settings. In short, binary
stringsare appropriatefor storing datathat the programmer thinks of as“ raw bytes’, whereas character
strings are appropriate for storing text.

Thebyt ea type supportstwo formats for input and output: “hex” format and PostgreSQL 's historical
“escape”’ format. Both of these are always accepted on input. The output format depends on the
configuration parameter bytea_output; the default is hex. (Note that the hex format was introduced in
PostgreSQL 9.0; earlier versions and some tools don't understand it.)

The SQL standard defines adifferent binary string type, called BLOB or Bl NARY LARGE OBJECT.
The input format is different from byt ea, but the provided functions and operators are mostly the
same.

byt ea Hex Format

The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first.
The entire string is preceded by the sequence\ x (to distinguish it from the escape format). In some
contexts, the initial backslash may need to be escaped by doubling it (see Section 4.1.2.1). For input,
the hexadecimal digits can be either upper or lower case, and whitespace is permitted between digit
pairs (but not within adigit pair nor inthe starting \ x sequence). The hex format is compatible with a
wide range of external applications and protocols, and it tends to be faster to convert than the escape
format, so itsuseis preferred.

Example:

SET bytea_output = 'hex';

SELECT '\ xDEADBEEF' : : byt ea;
byt ea

\ xdeadbeef

byt ea Escape Format

The“escape” format isthe traditional PostgreSQL format for thebyt ea type. It takesthe approach of
representing abinary string asasequenceof ASCII characters, while converting those bytesthat cannot

158

Data Types

be represented as an ASCI| character into special escape sequences. If, from the point of view of the
application, representing bytes as characters makes sense, then this representation can be convenient.
But in practiceit isusually confusing because it fuzzes up the distinction between binary strings and
character strings, and also the particular escape mechanism that was chosen is somewhat unwieldy.
Therefore, this format should probably be avoided for most new applications.

When entering byt ea values in escape format, octets of certain values must be escaped, while all
octet val ues can be escaped. In general, to escape an octet, convert it into itsthree-digit octal value and
precede it by a backslash. Backslash itself (octet decimal value 92) can alternatively be represented
by double backslashes. Table 8.7 shows the characters that must be escaped, and givesthe alternative
escape sequences where applicable.

Table8.7. byt ea Literal Escaped Octets

Decimal Octet |Description Escaped Input |Example Hex
Value Representation Representation
0 zero octet "\ 000 "\000'::bytea [\x00
39 single quote ttoor "' bytea \ x27
"\ 047"
92 backslash "\\'" or "\\"::bytea \ x5¢
"\134'
0to3land 127 |“non-printable” |'\xxx' (octal |'\001'::bytea |\x01
to 255 octets value)

The requirement to escape non-printable octets varies depending on local e settings. In some instances
you can get away with leaving them unescaped.

The reason that single quotes must be doubled, as shownin Table 8.7, isthat thisistrue for any string
literal in an SQL command. The generic string-literal parser consumes the outermost single quotes
and reduces any pair of single quotesto one datacharacter. What the byt ea input function seesisjust
one single quote, which it treats as a plain data character. However, the byt ea input function treats
backslashes as special, and the other behaviors shown in Table 8.7 are implemented by that function.

In some contexts, backslashes must be doubled compared to what is shown above, because the generic
string-literal parser will also reduce pairs of backslashes to one data character; see Section 4.1.2.1.

Byt ea octets are output in hex format by default. If you change bytea output to escape, “non-
printable” octets are converted to their equivalent three-digit octal value and preceded by one
backslash. Most “printable” octets are output by their standard representation in the client character
set, e.0.:

SET bytea out put = 'escape';

SELECT 'abc \ 153\ 154\ 155 \ 052\ 251\ 124" : : byt ea;
byt ea

abc klm *\ 251T

The octet with decimal value 92 (backslash) is doubled in the output. Details arein Table 8.8.

Table 8.8. byt ea Output Escaped Octets

Decimal Octet |Description Escaped Output |Example Output Result
Value Representation
92 backslash \\ ‘\134'::bytea [\\

159

Data Types

Decimal Octet |Description Escaped Output |Example Output Result
Value Representation
Oto3land 127 |“non-printable” |\ xxx (octal "\001'::bytea [\001
to 255 octets value)
32t0 126 “printable” octets |client character |'\ 176" :: bytea |~
set representation

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms of
escaping and unescaping byt ea strings. For example, you might also have to escape line feeds and
carriage returns if your interface automatically translates these.

8.5. Date/Time Types

PostgreSQL supports the full set of SQL date and time types, shown in Table 8.9. The operations
available on these datatypesare described in Section 9.9. Dates are counted according to the Gregorian
calendar, even in years before that calendar was introduced (see Section B.6 for more information).

Table 8.9. Date/Time Types

Name Storage Size |Description Low Value High Value |Resolution
ti mestanp |8bytes both dateand [4713BC 294276 AD 1 microsecond
[(p)] time (no time
[without Zone)
time
zone |
ti nestanp |8bytes both dateand [4713BC 294276 AD 1 microsecond
[(p)] time, with time
with tine zone
zone
date 4 bytes date(notime [4713BC 5874897 AD |1day

of day)
time 8 bytes time of day (no |00:00:00 24:00:00 1 microsecond
[(p)] date)
[without
time
zone |
time 12 bytes time of day 00:00:00+1559 | 24:00:00-1559 |1 microsecond
[(p)] (no date), with
with tinme time zone
zone
i nterval 16 bytes timeinterval |-178000000 178000000 1 microsecond
[fields] years years
[(p)]

Note

The SQL standard requires that writing just t i mest anp be equivalent to t i nest anp
wi t hout tinme zone, and PostgreSQL honorsthat behavior. t i mest anpt z isaccepted
asan abbreviationforti mestanp with tine zone;thisisaPostgreSQL extension.

tinme,timestanp,andi nt erval acceptanoptional precisionvaluep which specifiesthe number
of fractional digits retained in the seconds field. By default, there is no explicit bound on precision.
The allowed range of p isfrom 0 to 6.

160

Data Types

8.5.1.

Thei nt er val type has an additional option, which is to restrict the set of stored fields by writing
one of these phrases:

YEAR

MONTH

DAY

HOUR

M NUTE

SECOND

YEAR TO MONTH
DAY TO HOUR
DAY TO M NUTE
DAY TO SECOND
HOUR TO M NUTE
HOUR TO SECOND
M NUTE TO SECOND

Notethat if bothf i el ds and p are specified, thef i el ds must include SECOND, sincethe precision
applies only to the seconds.

Thetypetinme with tinme zone isdefined by the SQL standard, but the definition exhibits
properties which lead to questionable usefulness. In most cases, a combination of dat e, ti ne,
timestanp without tine zone,andtimestanp with tinme zone should provide a
complete range of date/time functionality required by any application.

Date/Time Input

Dateandtimeinput isaccepted in almost any reasonableformat, including | SO 8601, SQL -compatible,
traditional POSTGRES, and others. For some formats, ordering of day, month, and year in date
input is ambiguous and there is support for specifying the expected ordering of these fields. Set the
DateStyle parameter to MDY to select month-day-year interpretation, DMY to select day-month-year
interpretation, or YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See
Appendix B for the exact parsing rules of date/time input and for the recognized text fields including
months, days of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer to Section 4.1.2.7 for more information. SQL requires the following syntax

type [(p)] 'value

where p is an optional precision specification giving the number of fractional digits in the seconds
field. Precision can be specified fort i ne, ti mest anp, andi nt er val types, and can range from
0to 6. If no precision is specified in a constant specification, it defaults to the precision of the literal
value (but not more than 6 digits).

8.5.1.1. Dates

Table 8.10 shows some possible inputs for the dat e type.

Table 8.10. Date | nput

Example Description
1999-01-08 SO 8601; January 8 in any mode (recommended format)
January 8, 1999 unambiguousin any dat est yl e input mode

161

Data Types

Example Description
1/8/1999 January 8 in MDY mode; August 1 in DMY mode
1/18/1999 January 18 in MDY mode; rejected in other modes
01/02/03 January 2, 2003 in MDY mode; February 1, 2003 in DMY mode;
February 3, 2001 in YMD mode
1999-Jan-08 January 8 in any mode
Jan-08-1999 January 8 in any mode
08-Jan-1999 January 8 in any mode
99-Jan-08 January 8 in YMD mode, else error
08-Jan-99 January 8, except error in YMD mode
Jan-08-99 January 8, except error in YND mode
19990108 SO 8601; January 8, 1999 in any mode
990108 SO 8601; January 8, 1999 in any mode
1999.008 year and day of year
J2451187 Julian date
January 8, 99 BC year 99 BC
8.5.1.2. Times

Thetime-of-day typesaretime [(p)] without tine zoneandtime [(p)] with
time zone.tine adoneisequivalenttoti me wi thout tine zone.

Validinput for these types consists of atime of day followed by an optional time zone. (See Table8.11
and Table8.12) If atimezoneisspecifiedintheinputfort i me wi t hout ti me zone,itisslently
ignored. You can also specify a date but it will be ignored, except when you use a time zone name
that involves a daylight-savings rule, such as Amer i ca/ New_Yor k. In this case specifying the date
isrequired in order to determine whether standard or daylight-savings time applies. The appropriate
time zone offset isrecorded inthetime with tine zone vaueand isoutput as stored; it is
not adjusted to the active time zone.

Table8.11. Time Input

Example Description

04: 05: 06. 789 1SO 8601

04: 05: 06 1SO 8601

04: 05 1SO 8601

040506 1SO 8601

04: 05 AM same as 04:05; AM does not affect
vaue

04: 05 PM same as 16:05; input hour must be <=
12

04: 05: 06. 789-8 1SO 8601, with time zoneas UTC
offset

04: 05: 06- 08: 00 1SO 8601, with time zoneas UTC
offset

04: 05-08: 00 1SO 8601, with time zoneas UTC
offset

040506- 08 1SO 8601, with time zoneas UTC
offset

162

Data Types

Example Description

040506+0730 ISO 8601, with fractional-hour time
zone as UTC offset

040506+07: 30: 00 UTC offset specified to seconds (not
alowed in SO 8601)

04: 05: 06 PST time zone specified by abbreviation

2003- 04-12 04: 05: 06 Anerical/ New _York time zone specified by full name

Table8.12. Time Zone I nput

Example Description

PST Abbreviation (for Pacific Standard Time)

Aneri ca/ New_Yor k Full time zone name

PST8PDT POSI X -style time zone specification

-8:00: 00 UTC offset for PST

-8:00 UTC offset for PST (1SO 8601 extended format)
- 800 UTC offset for PST (1SO 8601 basic format)

-8 UTC offset for PST (1SO 8601 basic format)
zul u Military abbreviation for UTC

z Short form of zul u (also in 1SO 8601)

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Vadid input for the time stamp types consists of the concatenation of a date and a time, followed by
an optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the
time zone, but thisis not the preferred ordering.) Thus:

1999- 01-08 04: 05: 06

and:

1999-01-08 04:05:06 -8:00

are valid values, which follow the SO 8601 standard. In addition, the common format:

January 8 04:05:06 1999 PST
is supported.

The SQL standard differentiatest i mestanp wi thout tinme zoneandtinestanp wth
ti me zone literasby the presenceof a“+” or “-” symbol and time zone offset after the time. Hence,
according to the standard,

TI MESTAMP ' 2004-10-19 10: 23: 54'

isati nestanp w thout tine zone,while

TI MESTAMP ' 2004-10-19 10: 23: 54+02'

163

Data Types

isatinestanp with tinme zone. PostgreSQL never examines the content of aliteral string
before determining its type, and therefore will treat both of the above asti mest anp wi t hout
time zone. Toensurethat aliteral istreated asti mestanp with tine zone, giveitthe
correct explicit type:

TI MESTAMP WTH TI ME ZONE ' 2004-10-19 10: 23: 54+02'

In avalue that has been determined to bet i mest anp wi t hout tine zone, PostgreSQL will
silently ignoreany time zoneindication. That is, theresulting valueis derived from the date/time fields
in the input string, and is not adjusted for time zone.

Fortimestanp with time zone values, aninput string that includes an explicit time zone
will be converted to UTC (Universal Coordinated Time) using the appropriate offset for that time
zone. If no time zone is stated in the input string, then it is assumed to be in the time zone indicated
by the system's TimeZone parameter, and is converted to UTC using the offset for thet i nezone
zone. In either case, the value is stored internally as UTC, and the originally stated or assumed time
zone is not retained.

Whenatimestanp with tine zone vaueisoutput, it isaways converted from UTC to the
current t i mezone zone, and displayed as local time in that zone. To see the time in another time
zone, either changet i mezone or usethe AT TI ME ZONE construct (see Section 9.9.4).

Conversionshetweent i mest anp wi t hout time zoneandti mestanp with ti ne zone
normally assume that thet i mest anp wi t hout time zone value should be taken or given as
ti mezone loca time. A different time zone can be specified for the conversion using AT TI VE
ZONE.

8.5.1.4. Special Values

PostgreSQL supports several specia date/time input values for convenience, as shown in Table 8.13.
Thevaluesinfinity and -i nfinity are specialy represented inside the system and will be
displayed unchanged; but the others are simply notational shorthandsthat will be converted to ordinary
date/time values when read. (In particular, now and related strings are converted to a specific time
value as soon as they are read.) All of these values need to be enclosed in single quotes when used
as constants in SQL commands.

Table 8.13. Special Date/Time Inputs

Input String Valid Types Description

1970-01-01 00:00:00+00 (Unix
system time zero)

epoch dat e, ti nest anp

infinity dat e, ti mest anp, |ater than all other time stamps
i nterval
-infinity dat e, ti nmest anp, earlier than all other time

i nterval stamps
now date,tine,tinestanp current transaction's start time
t oday dat e, ti nest anp midnight (00: 00) today
t onor r ow dat e, ti nest anp midnight (00: 00) tomorrow
yest er day dat e, ti nest anp midnight (00: 00) yesterday
allballs time 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value
for the corresponding data type: CURRENT _DATE, CURRENT _TI ME, CURRENT _TI MESTAMP,
LOCALTI ME, LOCALTI MESTAMP. (See Section 9.9.5.) Note that these are SQL functions and are
not recognized in datainput strings.

164

Data Types

Caution

While the input strings now, t oday, t onorr ow, and yest er day are fine to use in
interactive SQL commands, they can have surprising behavior when the command is saved
to be executed later, for example in prepared statements, views, and function definitions. The
string can be converted to a specific time value that continuesto be used long after it becomes
stale. Use one of the SQL functions instead in such contexts. For example, CURRENT _DATE
+ lissaferthan’' t onorrow :: date.

8.5.2. Date/Time Output

The output format of the date/time types can be set to one of the four styles 1SO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default is the ISO format. (The SQL
standard requires the use of the 1 SO 8601 format. The name of the “SQL" output format is a historical
accident.) Table 8.14 shows exampl es of each output style. The output of thedat e andt i e typesis
generaly only the date or time part in accordance with the given examples. However, the POSTGRES
style outputs date-only valuesin 1SO format.

Table 8.14. Date/Time Output Styles

Style Specification Description Example
| SO 1SO 8601, SQL 1997-12-17 07:37: 16-08
standard
SQL traditional style 12/ 17/ 1997 07:37:16.00 PST
Post gres origina style Wed Dec 17 07:37:16 1997 PST
Ger man regional style 17.12.1997 07:37:16.00 PST
Note

SO 8601 specifies the use of uppercase letter T to separate the date and time. PostgreSQL
accepts that format on input, but on output it uses a space rather than T, as shown above. This
isfor readability and for consistency with RFC 3339' aswell as some other database systems.

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been
specified, otherwise month appears before day. (See Section 8.5.1 for how this setting also affects
interpretation of input values.) Table 8.15 shows examples.

Table 8.15. Date Order Conventions

dat estyl e Setting |Input Ordering Example Output

SQ., Dw day/mont h/year 17/ 12/ 1997 15:37:16.00 CET
SQ., MY nont h/day/year 12/ 17/ 1997 07:37:16.00 PST
Post gres, DMWY day/mont h/year Wed 17 Dec 07:37:16 1997 PST

In the SO style, the time zone is always shown as a signed numeric offset from UTC, with positive
sign used for zones east of Greenwich. The offset will be shown ashh (hoursonly) if it isan integral
number of hours, elseashh:mmif itisanintegral number of minutes, elseashh:mmss. (Thethird case
is not possible with any modern time zone standard, but it can appear when working with timestamps
that predate the adoption of standardized time zones.) In the other date styles, the time zone is shown

L hitps://datatracker.ietf.org/doc/ntml/rfc3339

165

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339

Data Types

8.5.3.

as an alphabetic abbreviation if oneisin common use in the current zone. Otherwise it appears as a
signed numeric offset in 1SO 8601 basic format (hh or hhnm). The alphabetic abbreviations shown
in these styles are taken from the IANA time zone database entry currently selected by the TimeZone
run-time parameter; they are not affected by the timezone_abbreviations setting.

The date/time style can be selected by the user using the SET dat est yl e command, the DateStyle
parameter in the post gresql . conf configuration file, or the PGDATESTYLE environment
variable on the server or client.

Theformatting functiont o_char (see Section 9.8) isalso available asamore flexible way to format
date/time output.

Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900s, but continue to be
prone to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL uses the
widely-used IANA (Olson) time zone database for information about historical time zone rules. For
times in the future, the assumption is that the latest known rules for a given time zone will continue
to be observed indefinitely far into the future.

PostgreSQL endeavorsto be compatiblewith the SQL standard definitionsfor typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

 Although the dat e type cannot have an associated time zone, thet i nme type can. Time zonesin
the real world have little meaning unless associated with a date as well as a time, since the offset
can vary through the year with daylight-saving time boundaries.

» Thedefault time zoneis specified as a constant numeric offset from UTC. It istherefore impossible
to adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time
when using time zones. We do not recommend using thetypetime with tinme zone (though
it is supported by PostgreSQL for legacy applications and for compliance with the SQL standard).
PostgreSQL assumes your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local timein
the zone specified by the TimeZone configuration parameter before being displayed to the client.

PostgreSQL allows you to specify time zones in three different forms:

A full time zone name, for example Amer i ca/ New_Yor k. The recognized time zone names are
listed inthe pg_t i nezone_names view (see Section 53.34). PostgreSQL uses the widely-used
IANA time zone data for this purpose, so the same time zone names are a so recognized by other
software.

» A time zone abbreviation, for example PST. Such a specification merely defines a particular offset
from UTC, in contrast to full time zone names which can imply a set of daylight savingstransition
rulesaswell. The recognized abbreviations arelisted inthepg_t i mezone_abbr evs view (see
Section 53.33). Y ou cannot set the configuration parameters TimeZone or log_timezone to atime
zone abbreviation, but you can use abbreviations in date/time input values and with the AT Tl MVE
ZONE operator.

* In addition to the timezone names and abbreviations, PostgreSQL will accept POSIX-style time
zone specifications, as described in Section B.5. This option is not normally preferable to using a
named time zone, but it may be necessary if no suitable IANA time zone entry is available.

In short, thisisthe difference between abbreviations and full names: abbreviations represent a specific
offset from UTC, whereas many of thefull namesimply alocal daylight-savingstimerule, and so have

166

Data Types

8.5.4.

two possible UTC offsets. Asan example, 2014- 06- 04 12: 00 Aneri ca/ New_Yor k represents
noon local timein New Y ork, which for this particular date was Eastern Daylight Time (UTC-4). So
2014- 06-04 12: 00 EDT specifies that same time instant. But 2014- 06- 04 12: 00 EST
specifies noon Eastern Standard Time (UTC-5), regardless of whether daylight savingswas nominally
in effect on that date.

Note

The sign in POSIX-style time zone specifications has the opposite meaning of the sign in
| SO-8601 datetime values. For example, the POSI X timezonefor 2014- 06- 04 12: 00+04
would be UTC-4.

To complicate matters, somejurisdictions have used the same timezone abbreviation to mean different
UTC offsets at different times; for example, in Moscow MBK has meant UTC+3 in some years and
UTC+4in others. PostgreSQL interprets such abbreviations according to whatever they meant (or had
most recently meant) on the specified date; but, aswith the EST example above, thisis not necessarily
the same aslocal civil time on that date.

In al cases, timezone names and abbreviations are recognized case-insensitively. (This is a change
from PostgreSQL versions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither timezone names nor abbreviations are hard-wired into the server; they are obtained from
configuration files stored under . . . / share/ti mezone/ and.../share/ti mezonesets/
of theinstallation directory (see Section B.4).

The TimeZone configuration parameter can be set in the file post gr esql . conf, or in any of the
other standard ways described in Chapter 19. There are also some special waysto set it:

» The SQL command SET TI ME ZONE sets the time zone for the session. This is an aternative
spelling of SET TI MEZONE TOwith a more SQL-spec-compatible syntax.

» The PGTZ environment variable is used by libpg clientsto send a SET TI ME ZONE command
to the server upon connection.

Interval Input

i nt erval valuescan bewritten using the following verbose syntax:

[@ quantity unit [quantity unit...] [direction]

where quant ity is a number (possibly signed); unit is nmi crosecond, m|lisecond,
second, m nut e, hour, day, week, nont h, year, decade, century, m | | enni um or
abbreviations or plurals of these units; di r ect i on canbeago or empty. The at sign (@ isoptional
noise. The amounts of the different units are implicitly added with appropriate sign accounting.
ago negates all the fields. This syntax is also used for interval output, if IntervalStyle is set to
post gres_ver bose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example,' 1 12:59: 10" isreadthesameas' 1 day 12 hours 59 min 10 sec'.Also,
acombination of years and months can be specified with a dash; for example' 200- 10" isread the
sameas' 200 years 10 nont hs' . (Theseshorter formsarein fact the only ones allowed by the
SQL standard, and are used for output when | nt er val St yl e issettosql _st andard.)

Interval values can also be written as ISO 8601 time intervals, using either the “format with
designators’ of the standard's section 4.4.3.2 or the “ alternative format” of section 4.4.3.3. The format
with designators looks like this:

167

Data Types

P quantity unit [quantity unit ...] [T [quantity unit ...]]

The string must start with aP, and may includeaT that introducesthe time-of-day units. The available
unit abbreviations are given in Table 8.16. Units may be omitted, and may be specified in any order,
but units smaller than a day must appear after T. In particular, the meaning of Mdepends on whether
it isbefore or after T.

Table 8.16. 1SO 8601 I nterval Unit Abbreviations

Abbreviation Meaning

Years

Months (in the date part)
Weeks

Days

Hours

Minutes (in the time part)
Seconds

nlz[z[ols[=z]<

In the alternative format:

P [years-nonths-days] [T hours:ninutes:seconds]

the string must begin with P, and a T separates the date and time parts of the interval. The values are
given as numbers similar to 1SO 8601 dates.

When writing an interval constant with a f i el ds specification, or when assigning a string to
an interval column that was defined with afi el ds specification, the interpretation of unmarked
guantitiesdependsonthef i el ds. For example!| NTERVAL ' 1' YEARisread as 1 year, whereas
| NTERVAL ' 1' means1second. Also, field values“totheright” of theleast significant field allowed
by the f i el ds specification are silently discarded. For example, writing | NTERVAL ' 1 day
2:03: 04" HOUR TO M NUTE resultsin dropping the seconds field, but not the day field.

According to the SQL standard all fields of an interval value must have the same sign, so a leading
negative sign appliesto all fields; for examplethe negativesignintheinterval literal ' - 1 2: 03: 04'
appliesto both the days and hour/minute/second parts. PostgreSQL allowsthe fields to have different
signs, and traditionally treats each field in the textual representation as independently signed, so that
the hour/minute/second part is considered positive in this example. If | nt erval Styl e is set to
sqgl _standar d then aleading sign is considered to apply to all fields (but only if no additional
signs appear). Otherwise the traditional PostgreSQL interpretation is used. To avoid ambiguity, it's
recommended to attach an explicit sign to each field if any field is negative.

Internally, i nt er val values are stored as three integral fields: months, days, and microseconds.
Thesefields are kept separate because the number of daysin amonth varies, whileaday can have 23 or
25 hoursif adaylight savingstimetransition isinvolved. Aninterval input string that uses other units
isnormalized into this format, and then reconstructed in a standardized way for output, for example:

SELECT ' 2 years 15 nonths 100 weeks 99 hours 123456789
mlliseconds'::interval;
i nterval

3 years 3 nons 700 days 133:17:36. 789

Here weeks, which are understood as “7 days’, have been kept separate, while the smaller and larger
time units were combined and normalized.

168

Data Types

8.5.5.

Input field values can have fractional parts, for example ' 1. 5 weeks' or ' 01: 02: 03. 45" .
However, because i nt erval internaly stores only integral fields, fractional values must be
converted into smaller units. Fractional parts of units greater than months are rounded to be an integer
number of months,e.g.' 1. 5 years' becomes' 1 year 6 nons' . Fractiona partsof weeksand
days are computed to be an integer number of days and microseconds, assuming 30 days per month
and 24 hours per day, eg.,' 1. 75 nonths' becomes1l non 22 days 12: 00: 00. Only
seconds will ever be shown as fractional on outpuit.

Table 8.17 shows some examples of valid i nt er val input.

Table8.17. Interval I nput

Example Description

1-2 SQL standard format: 1 year 2 months

3 4:05:06 SQL standard format: 3 days 4 hours 5 minutes 6
seconds

1 year 2 nonths 3 days 4 hours 5 |Traditional Postgresformat: 1 year 2 months 3

m nutes 6 seconds days 4 hours 5 minutes 6 seconds

P1Y2M3DT4H5MBS SO 8601 “format with designators’: same
meaning as above

PO001- 02- 03T04: 05: 06 SO 8601 “alternative format” : same meaning as
above

Interval Output

As previoudly explained, PostgreSQL storesi nt er val values as months, days, and microseconds.
For output, the months field is converted to years and months by dividing by 12. The days field is
shown as-is. The microseconds field is converted to hours, minutes, seconds, and fractional seconds.
Thus months, minutes, and seconds will never be shown as exceeding the ranges 0-11, 0-59,
and 0-59 respectively, while the displayed years, days, and hours fields can be quite large. (The
justify days andjustify_hours functions can be used if it is desirable to transpose large
days or hours values into the next higher field.)

The output format of the interval type can be set to one of the four styles sql _st andard,
post gres, postgres_verbose,ori so_8601, using thecommand SET i nt erval styl e.
The default isthe post gr es format. Table 8.18 shows examples of each output style.

The sql _st andar d style produces output that conforms to the SQL standard's specification for
interval literal strings, if theinterval value meetsthe standard's restrictions (either year-month only or
day-time only, with no mixing of positive and negative components). Otherwise the output |ooks like
a standard year-month literal string followed by a day-time literal string, with explicit signs added to
disambiguate mixed-sign intervals.

The output of the post gr es style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to | SO.

The output of the post gr es_ver bose style matches the output of PostgreSQL releases prior to
8.4 when the Dat eSt y| e parameter was set to non-1 SO output.

Theoutput of thei so_8601 style matchesthe“format with designators’ described in section 4.4.3.2
of the SO 8601 standard.

Table 8.18. Interval Output Style Examples

Style Specification Year-Month Interval |Day-Timelnterval Mixed Interval
sql _standard 1-2 34:05:06 -1-2 +3-4:05:06

169

Data Types

Style Specification Year-Month Interval |Day-Timelnterval Mixed Interval

postgres 1 year 2 mons 3 days 04:05:06 -1 year -2 mons +3
days -04:05:06

post gres_verbose |@ 1 year 2 mons @ 3 days4 hours5 @ 1year 2 mons-3

mins 6 secs days 4 hours 5 mins 6

Secs ago

i so_8601 P1lY 2M P3DT4H5M6S P-1Y-2M3D
T-4H-5M-6S

8.6. Boolean Type

PostgreSQL provides the standard SQL typebool ean; see Table 8.19. Thebool ean type can have
severa states: “true”, “false”, and athird state, “unknown”, whichisrepresented by the SQL null value.

Table 8.19. Boolean Data Type

Name Storage Size Description
bool ean 1 byte state of true or false

Boolean constants can be represented in SQL queriesby the SQL key words TRUE, FALSE, and NULL.
Thedatatypeinput function for typebool ean acceptsthese string representationsfor the“true” state:

true
yes
on

1

and these representations for the “false” state:

fal se
no

of f

0

Unique prefixes of these strings are also accepted, for examplet or n. Leading or trailing whitespace
isignored, and case does not matter.

The datatype output function for typebool ean alwaysemitseithert or f , asshownin Example 8.2.

Example 8.2. Using thebool ean Type

CREATE TABLE testl (a boolean, b text);

I NSERT I NTO testl VALUES (TRUE, 'sic est');
| NSERT | NTO test1 VALUES (FALSE, 'non est');
SELECT * FROM test1;

a | b

t | sic est
f | non est

SELECT * FROM test1l WHERE a;
a | b

170

Data Types

t | sic est

The key words TRUE and FALSE are the preferred (SQL-compliant) method for writing Boolean
constants in SQL queries. But you can also use the string representations by following the generic
string-literal constant syntax described in Section 4.1.2.7, for example' yes' : : bool ean.

Note that the parser automatically understands that TRUE and FAL SE are of type bool ean, but this
isnot so for NULL because that can have any type. So in some contexts you might have to cast NULL
to bool ean explicitly, for example NULL: : bool ean. Conversely, the cast can be omitted from a
string-literal Boolean value in contexts where the parser can deduce that the literal must be of type
bool ean.

8.7. Enumerated Types

8.7.1.

8.7.2.

Enumerated (enum) types are data types that comprise a static, ordered set of values. They are
equivalent to the enumtypes supported in a number of programming languages. An example of an
enum type might be the days of the week, or a set of status values for a piece of data.

Declaration of Enumerated Types

Enum types are created using the CREATE TY PE command, for example:

CREATE TYPE mpod AS ENUM ('sad', 'ok', 'happy');

Once created, the enum type can be used in table and function definitions much like any other type:

CREATE TYPE mpod AS ENUM ('sad', 'ok', 'happy');
CREATE TABLE person (
name text,
current _nmood npod
)
| NSERT | NTO person VALUES (' Moe', 'happy');
SELECT * FROM person WHERE current _nood = ' happy';
nane | current_nood

______ .
Moe | happy

(1 row

Ordering

The ordering of the values in an enum type is the order in which the values were listed when the
type was created. All standard comparison operators and related aggregate functions are supported
for enums. For example:

| NSERT | NTO person VALUES ('Larry', 'sad');

| NSERT | NTO person VALUES ('Curly', 'ok');

SELECT * FROM person WHERE current _nood > 'sad';
name | current_nood

SELECT * FROM person WHERE current _nmood > 'sad' ORDER BY
current _nood;

171

Data Types

8.7.3.

8.7.4.

Curly | ok
Moe | happy
(2 rows)

SELECT nane

FROM per son

WHERE current_mpood = (SELECT M N(current_nood) FROM person);
name

Type Safety

Each enumerated data type is separate and cannot be compared with other enumerated types. Seethis
example:

CREATE TYPE happi ness AS ENUM (' happy', 'very happy', 'ecstatic');
CREATE TABLE hol i days (

num weeks i nt eger,

happi ness happi ness
)
I NSERT | NTO hol i days(num weeks, happi ness) VALUES (4, 'happy');
I NSERT | NTO hol i days(num weeks, happi ness) VALUES (6, 'very happy');
I NSERT | NTO hol i days(num weeks, happi ness) VALUES (8, 'ecstatic');
I NSERT | NTO hol i days(num weeks, happi ness) VALUES (2, 'sad');
ERROR: invalid input value for enum happi ness: "sad"
SELECT person. nane, holidays. num weeks FROM person, holidays

WHERE person. current _nood = hol i days. happi ness;

ERROR: operator does not exist: npbod = happi ness

If you really need to do something like that, you can either write a custom operator or add explicit
casts to your query:

SELECT person. nanme, holidays. num weeks FROM person, holidays
WHERE person. current _nood: :text = holidays. happi ness: :text;
name | num weeks

Implementation Details

Enum labels are case sensitive, so ' happy' isnotthesameas' HAPPY' . White space in the labels
is significant too.

Although enum types are primarily intended for static sets of values, there is support for adding new
valuesto an existing enum type, and for renaming values (see ALTER TY PE). Existing values cannot
be removed from an enum type, nor can the sort ordering of such values be changed, short of dropping
and re-creating the enum type.

An enum value occupies four bytes on disk. The length of an enum value's textual label islimited by
the NAMEDATAL EN setting compiled into PostgreSQL ; in standard builds this means at most 63 bytes.

172

Data Types

Thetrandations from internal enum valuesto textual labels are kept in the system catalog pg_enum
Querying this catalog directly can be useful.

8.8. Geometric Types

8.8.1.

8.8.2.

Geometric datatypes represent two-dimensional spatial objects. Table 8.20 shows the geometric types
available in PostgreSQL .

Table 8.20. Geometric Types

Name Storage Size Description Representation

poi nt 16 bytes Point on a plane xy)

l'ine 24 bytes Infiniteline {A,B,C}

| seg 32 bytes Finite line segment [(x1,y1),(x2,y2)]

box 32 bytes Rectangular box (x1,y1),(x2,y2)

pat h 16+16n bytes Closed path (similar to polygon) ((x1,yD),...)

pat h 16+16n bytes Open path [(x1,y1),..]

pol ygon 40+16n bytes Polygon (similar to closed path) ((x1,y1),...)

circle 24 bytes Circle <(x,y),r> (center
point and radius)

Inall thesetypes, theindividual coordinatesare stored asdoubl e pr eci si on (f | oat 8) numbers.

A rich set of functions and operators is available to perform various geometric operations such as
scaling, translation, rotation, and determining intersections. They are explained in Section 9.11.

Points

Pointsarethefundamental two-dimensional building block for geometrictypes. Valuesof typepoi nt
are specified using either of the following syntaxes:

(x,vy)
X,y

where x andy are the respective coordinates, as floating-point numbers.

Points are output using the first syntax.

Lines

Lines are represented by the linear equation Ax + By + C= 0, where A and B are not both zero. Values
of typel i ne areinput and output in the following form:

{ A B C}

Alternatively, any of the following forms can be used for input:
x1, yl) , (x2, y2)]

x1, yl) , (x2,y2))

x1, yl) , (x2, y2)
x1, y1 X2, y2

—~r—
—~ A~~~

173

Data Types

8.8.3.

8.8.4.

8.8.5.

8.8.6.

where (x1, y1) and (x2, y2) aretwo different points ontheline.

Line Segments

Line segments are represented by pairs of pointsthat are the endpoints of the segment. Values of type
| seg are specified using any of the following syntaxes:

x1, yl1) , (x2, y2)]
x1, yl1) , (x2, y2))
x1, yl) , (x2, y2)
x1, yl , X2 , y2

—~~r—
—~ A~~~

where (x1, y1) and (x2, y2) arethe end points of the line segment.

Line segments are output using the first syntax.

Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using any of the following syntaxes:

((x1, yl) , (x2,y2))
(X1, y1) , (x2, y2)
x1, y1 X2, y2
where (x1, y1) and (x2, y2) areany two opposite corners of the box.

Boxes are output using the second syntax.

Any two opposite corners can be supplied on input, but the values will be reordered as needed to store
the upper right and lower |eft corners, in that order.

Paths

Paths are represented by lists of connected points. Paths can be open, where the first and last pointsin
thelist are considered not connected, or closed, wherethefirst and last pointsare considered connected.

Vaues of type pat h are specified using any of the following syntaxes:

[(x2, y1), ..., (xn, yn)]
((x¥x,vy1), ... , (xn, yn))
(x1, y1), ... , (xn, yn)

(x1, y1 v Xn , yn)
x1, yl s Xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([])
indicate an open path, while parentheses (()) indicate a closed path. When the outermost parentheses
are omitted, as in the third through fifth syntaxes, a closed path is assumed.

Paths are output using the first or second syntax, as appropriate.

Polygons

Polygons are represented by lists of points (the vertices of the polygon). Polygons are very similar
to closed paths; the essential semantic difference is that a polygon is considered to include the area
within it, while a path is not.

174

Data Types

8.8.7.

An important implementation difference between polygons and paths is that the stored representation
of a polygon includes its smallest bounding box. This speeds up certain search operations, athough
computing the bounding box adds overhead while constructing new polygons.

Vaues of type pol ygon are specified using any of the following syntaxes:

((x¥1,vy1), ... , (xn, yn))
(x1, y1), ... , (xn, yn)
(x1, y1 v e Xn , yn)
x1, yl y e Xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

Circles

Circles are represented by a center point and radius. Vaues of typeci r cl e are specified using any
of the following syntaxes:

~ A

—~ A~~~

~— — —

X X X X
<KL KKK
_~ = = =

where (X, y) isthe center point and r isthe radius of the circle.

Circles are output using the first syntax.

8.9. Network Address Types

8.9.1.

PostgreSQL offers data types to store |Pv4, IPv6, and MAC addresses, as shown in Table 8.21. It is
better to use these types instead of plain text types to store network addresses, because these types
offer input error checking and specialized operators and functions (see Section 9.12).

Table 8.21. Network Address Types

Name Storage Size Description

cidr 7 or 19 bytes IPv4 and IPv6 networks

i net 7 or 19 bytes IPv4 and IPv6 hosts and networks
macaddr 6 bytes MAC addresses

macaddr 8 8 bytes MAC addresses (EUI-64 format)

When sorting i net or cidr data types, IPv4 addresses will always sort before 1Pv6
addresses, including |Pv4 addresses encapsulated or mapped to |Pv6 addresses, such as ::10.2.3.4
or ::ffff:10.4.3.2.

| net

Thei net typeholdsanIPv4 or IPv6 host address, and optionally its subnet, all in onefield. The subnet
is represented by the number of network address bits present in the host address (the “netmask”). If
the netmask is 32 and the address is | Pv4, then the val ue does not indicate a subnet, only asingle host.
In IPv6, the address length is 128 bits, so 128 bits specify a unique host address. Note that if you want
to accept only networks, you should usethe ci dr typerather thani net .

175

Data Types

The input format for thistypeisaddr ess/ y where addr ess isan IPv4 or IPv6 addressand y is
the number of bitsin the netmask. If the/ y portion is omitted, the netmask is taken to be 32 for |Pv4
or 128 for IPv6, so the value represents just a single host. On display, the / y portion is suppressed
if the netmask specifies asingle host.

8.9.2.cidr

Theci dr typeholdsan IPv4 or |Pv6 network specification. Input and output formatsfollow Classless
Internet Domain Routing conventions. The format for specifying networks is addr ess/ y where
addr ess isthe network's|lowest address represented as an | Pv4 or IPv6 address, and y isthe number
of bitsin thenetmask. If y isomitted, it iscal culated using assumptionsfrom the ol der classful network
numbering system, except it will be at least large enough to include all of the octets written in the
input. It isan error to specify a network address that has bits set to the right of the specified netmask.

Table 8.22 shows some examples.

Table8.22. ci dr TypelInput Examples

ci dr Input ci dr Output abbrev(cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24

128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16

128.1.2 128.1.2.0/24 128.1.2/24

10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

10.1.2.3/32 10.1.2.3/32 10.1.2.3/32
2001:4f8:3:ba::/64 2001:4f8:3:ba::/64 2001:4f8:3:ba/64
2001:4f8:3:ba: 2001:4f8:3:ba: 2001:4f8:3:ba:
2e0:81ff:fe22:d1f1/128 2e0:81ff:fe22:d1f1/128 2e0:81ff:fe22:d1f1/128
::ffff:1.2.3.0/120 :ffff:1.2.3.0/120 +ffff:1.2.3/120
::ffff:1.2.3.0/128 ::ffff:1.2.3.0/128 :ffff:1.2.3.0/128

8.9.3.1 net vs. ci dr

Theessential differencebetweeni net andci dr datatypesisthati net acceptsvaueswith nonzero
bits to the right of the netmask, whereas ci dr does not. For example, 192. 168. 0. 1/ 24 isvalid
fori net but not for ci dr.

Tip
If you do not like the output format for i net or ci dr values, try thefunctionshost ,t ext,
and abbr ev.
8.9.4. macaddr

176

Data Types

8.9.5.

Thenmacaddr typestoresMAC addresses, known for examplefrom Ethernet card hardware addresses
(although MAC addresses are used for other purposes as well). Input is accepted in the following
formats:

' 08: 00: 2b: 01: 02: 03"
' 08- 00- 2b- 01- 02- 03'
' 08002b: 010203’

' 08002b- 010203’

' 0800. 2b01. 0203"

' 0800- 2b01- 0203"

' 08002b010203'

These examplesall specify the same address. Upper and lower caseisaccepted for the digitsa through
f . Output is always in the first of the forms shown.

|IEEE Standard 802-2001 specifies the second form shown (with hyphens) as the canonical form
for MAC addresses, and specifies the first form (with colons) as used with bit-reversed, MSB-
first notation, so that 08-00-2b-01-02-03 = 10:00:D4:80:40:C0. This convention is widely ignored
nowadays, and it is relevant only for obsolete network protocols (such as Token Ring). PostgreSQL
makes no provisions for bit reversal; all accepted formats use the canonical LSB order.

The remaining five input formats are not part of any standard.

macaddr 8

The macaddr 8 type stores MAC addresses in EUI-64 format, known for example from Ethernet
card hardware addresses (although MAC addresses are used for other purposes as well). This type
can accept both 6 and 8 byte length MAC addresses and stores them in 8 byte length format. MAC
addresses given in 6 byte format will be stored in 8 byte length format with the 4th and 5th bytes set
to FF and FE, respectively. Note that IPv6 uses a modified EUI-64 format where the 7th bit should
be set to one after the conversion from EUI-48. The function macaddr 8_set 7bi t is provided to
make this change. Generally speaking, any input which is comprised of pairs of hex digits (on byte
boundaries), optionally separated consistently by oneof ' : ' ,' -' or'."',isaccepted. The number
of hex digits must be either 16 (8 bytes) or 12 (6 bytes). Leading and trailing whitespace is ignored.
The following are examples of input formats that are accepted:

' 08: 00: 2b: 01: 02: 03: 04: 05'
' 08- 00- 2b- 01- 02- 03- 04- 05'
' 08002b: 0102030405

' 08002b- 0102030405

' 0800. 2b01. 0203. 0405'

' 0800- 2b01- 0203- 0405

' 08002b01: 02030405

' 08002b0102030405

These examplesall specify the same address. Upper and lower caseisaccepted for the digitsa through
f . Output is always in the first of the forms shown.

Thelast six input formats shown above are not part of any standard.

To convert a traditional 48 bit MAC address in EUI-48 format to modified EUI-64 format to be
included as the host portion of an IPv6 address, use macaddr 8_set 7bi t as shown:

SELECT nacaddr 8_set 7bi t (' 08: 00: 2b: 01: 02: 03") ;

nmacaddr 8_set 7bi t

177

Data Types

8.10.

8.11.

Oa: 00: 2b: ff:fe: 01:02: 03
(1 row

Bit String Types

Bit strings are strings of 1's and 0's. They can be used to store or visualize bit masks. There are two
SQL bittypes: bi t (n) andbi t varyi ng(n),wheren isapositive integer.

bi t type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bit varyi ng datais of variable length up to the maximum length n; longer strings will
be rejected. Writing bi t without alength is equivalent to bi t (1) , whilebi t varyi ng without
alength specification means unlimited length.

Note

If one explicitly castsabit-string valueto bi t (n) , it will be truncated or zero-padded on the
right to be exactly n bits, without raising an error. Similarly, if one explicitly casts abit-string
valuetobi t varyi ng(n),itwill betruncated on theright if it is more than n bits.

Refer to Section 4.1.2.5 for information about the syntax of bit string constants. Bit-logical operators
and string manipulation functions are available; see Section 9.6.

Example 8.3. Using the Bit String Types

CREATE TABLE test (a BIT(3), b BIT VARYINES5));
I NSERT | NTO test VALUES (B 101', B 00');
I NSERT | NTO test VALUES (B 10', B 101');

ERROR: bit string length 2 does not match type bit(3)

I NSERT | NTO test VALUES (B 10'::bit(3), B 101');
SELECT * FROM t est;

a | b
_____ [E S,
101 | 00
100 | 101

A bit string value requires 1 byte for each group of 8 hits, plus 5 or 8 bytes overhead depending on
the length of the string (but long values may be compressed or moved out-of-line, as explained in
Section 8.3 for character strings).

Text Search Types

PostgreSQL provides two datatypes that are designed to support full text search, which isthe activity
of searching through a collection of natural-language documents to locate those that best match a
guery. Thet svect or typerepresents adocument in aform optimized for text search; thet squery
type similarly represents atext query. Chapter 12 provides a detailed explanation of this facility, and
Section 9.13 summarizes the related functions and operators.

8.11.1. t svect or

178

Data Types

A tsvector vaueisasorted list of distinct lexemes, which are words that have been normalized
to merge different variants of the same word (see Chapter 12 for details). Sorting and duplicate-
elimination are done automatically during input, as shown in this example:

SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector;
t svect or

To represent lexemes containing whitespace or punctuation, surround them with quotes:

SELECT $$the | exene ' ' contains spaces$$::tsvector;
t svect or

'contains' 'lexene' 'spaces' 'the'

(Weuse dollar-quoted string literalsin this example and the next one to avoid the confusion of having
to double quote marks within the literals.) Embedded quotes and backslashes must be doubled:

SELECT $$the lexene 'Joe''s' contains a quote$$::tsvector;
t svect or

'contains' 'lexene' 'quote' 'the'

Optionally, integer positions can be attached to lexemes:

SELECT 'a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and: 8 ate: 9 a: 10
fat:11 rat: 12'::tsvector;
t svect or

'a':1,6,10 'and':8 'ate':9 'cat':3 'fat':2,11 'mat':7 'on':5
'rat':12 'sat': 4

A position normally indicates the source word's | ocation in the document. Positional information can
be used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently
set to 16383. Duplicate positions for the same lexeme are discarded.

Lexemes that have positions can further be labeled with aweight, which can be A, B, C, or D. Disthe
default and hence is not shown on output:

SELECT 'a: 1A fat: 2B, 4C cat: 5D ::tsvector;
t svect or

Weights are typically used to reflect document structure, for example by marking title words
differently from body words. Text search ranking functions can assign different priorities to the
different weight markers.

It isimportant to understand that thet svect or typeitself doesnot perform any word normalization;
it assumes the wordsiit is given are normalized appropriately for the application. For example,

SELECT ' The Fat Rats'::tsvector;

179

Data Types

t svector

"Fat' 'Rats' ' The'

For most English-text-searching applications the above words would be considered non-normalized,
but t svect or doesn't care. Raw document text should usually be passed throught o_t svect or
to normalize the words appropriately for searching:

SELECT to_tsvector('english', 'The Fat Rats');
to_tsvector

Again, see Chapter 12 for more detail.

8.11.2. t squery

At squery vauestores|lexemesthat areto be searched for, and can combine them using the Boolean
operators & (AND), | (OR), and! (NOT), aswell as the phrase search operator <- > (FOLLOWED
BY). Thereisaso avariant <N> of the FOLLOWED BY operator, where Nisan integer constant that
specifies the distance between the two lexemes being searched for. <- > isequivalent to <1>.

Parentheses can be used to enforce grouping of these operators. Inthe absence of parentheses, ! (NOT)
binds most tightly, <- > (FOLLOWED BY) next most tightly, then & (AND), with | (OR) binding
the least tightly.

Here are some examples:

SELECT 'fat & rat'::tsquery;
tsquery

SELECT 'fat & (rat | cat)'::tsquery;
tsquery

SELECT 'fat & rat & ! cat'::tsquery;
t squery

Optionally, lexemesin at squery can be labeled with one or more weight letters, which restricts
them to match only t svect or lexemes with one of those weights:

SELECT 'fat:ab & cat'::tsquery;
t squery

"fat': AB & 'cat'
Also, lexemesinat squery can belabeled with * to specify prefix matching:
SELECT ' super:*'::tsquery;

tsquery

180

Data Types

'super’' :*
This query will match any wordinat svect or that begins with “super”.

Quoting rulesfor lexemesarethe same asdescribed previoudly for lexemesint svect or ; and, aswith
t svect or, any required normalization of words must be done before converting to the t squery
type. Thet o_t squery function is convenient for performing such normalization:

SELECT to_tsquery('Fat:ab & Cats');
to_tsquery

Note that t o_t squery will process prefixes in the same way as other words, which means this
comparison returns true:

SELECT to_tsvector('postgraduate’) @to_tsquery('postgres:*');
?col um?

because post gr es gets stemmed to post gr :

SELECT to_tsvector('postgraduate’), to_tsquery('postgres:*');
to_tsvector | to_tsquery

"postgradu’':1 | 'postgr':*

which will match the stemmed form of post gr aduat e.

UUID Type

The data type uui d stores Universally Unique Identifiers (UUID) as defined by RFC 95622, 1SO/
|EC 9834-8:2005, and related standards. (Some systems refer to this data type as a globally unique
identifier, or GUID, instead.) This identifier is a 128-bit quantity that is generated by an agorithm
chosen to make it very unlikely that the same identifier will be generated by anyone elsein the known
universe using the same algorithm. Therefore, for distributed systems, theseidentifiers provide abetter
uni queness guarantee than sequence generators, which are only unique within a single database.

8.12

RFC 9562 defines 8 different UUID versions. Each version has specific requirements for generating
new UUID values, and each version provides distinct benefits and drawbacks. PostgreSQL provides
native support for generating UUI Ds using the UUIDv4 and UUIDv7 agorithms. Alternatively, UUID
values can be generated outside of the database using any algorithm. The datatype uui d can be used
to store any UUID, regardless of the origin and the UUID version.

A UUID is written as a sequence of lower-case hexadecimal digits, in several groups separated by
hyphens, specifically agroup of 8 digitsfollowed by three groups of 4 digitsfollowed by agroup of 12
digits, for atotal of 32 digits representing the 128 bits. An example of aUUID inthisstandard formis:

a0eebc99- 9cOb- 4ef 8- bb6d- 6bb9bd380all

PostgreSQL also accepts the following aternative forms for input: use of upper-case digits, the
standard format surrounded by braces, omitting some or al hyphens, adding a hyphen after any group
of four digits. Examples are:

2 https://datatracker.ietf.org/doc/html/rfc9562

181

https://datatracker.ietf.org/doc/html/rfc9562
https://datatracker.ietf.org/doc/html/rfc9562

Data Types

AOEEBC99- 9C0OB- 4EF8- BB6D- 6BB9BD380A11
{a0eebc99- 9cOb- 4ef 8- bb6d- 6bb9bd380al1}
aleebc999cOb4ef 8bb6d6bb9bd380all

alee- bc99- 9cOb- 4ef 8- bb6d- 6bb9- bd38- 0all
{a0eebc99- 9cOb4ef 8- bb6d6bb9- bd380a11}

Output is always in the standard form.

See Section 9.14 for how to generate a UUID in PostgreSQL.

XML Type

The xm datatype can be used to store XML data. Its advantage over storing XML datain at ext
field isthat it checks the input values for well-formedness, and there are support functions to perform
type-safe operations on it; see Section 9.15. Use of this data type requiresthe installation to have been
built withconfi gure --with-1ibxn.

8.13

The xm type can store well-formed “documents’, as defined by the XML standard, as well as
“content” fragments, which are defined by reference to the more permissive “document node” 3 of the
XQuery and XPath data model. Roughly, this means that content fragments can have more than one
top-level element or character node. The expression xm val ue 1S DOCUMENT can be used to
evaluate whether a particular xm valueisafull document or only a content fragment.

Limits and compatibility notes for thexm data type can be found in Section D.3.

8.13.1. Creating XML Values

To produce avalue of type xml from character data, use the function xm par se:

XMLPARSE ({ DOCUMENT | CONTENT } val ue)
Examples:
XMLPARSE (DOCUMENT ' <?xm version="1.0"?><book><titl| e>Manual </

titl e><chapter>...</chapter></book>")
XMLPARSE (CONTENT ' abc<f oo>bar </ f oo><bar >f oo</ bar >')

Whilethisistheonly way to convert character stringsinto XML values according to the SQL standard,
the PostgreSQL -specific syntaxes:

xm ' <foo>bar</foo>'

' <f oo>bar </ foo>":: xni

can also be used.

Thexm type does not validate input values against a document type declaration (DTD), even when
theinput value specifiesaDTD. Thereisalso currently no built-in support for validating against other
XML schemalanguages such as XML Schema.

The inverse operation, producing a character string value from xm, uses the function
xm serialize:

3 https://www.w3.0rg/ TR/2010/REC-xpath-datamodel -20101214/#DocumentNode

182

https://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/#DocumentNode
https://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/#DocumentNode

Data Types

XMLSERI ALI ZE ({ DOCUMENT | CONTENT } value AS type [[NO]
| NDENT])

type canbechar act er,charact er varyi ng,ort ext (oranaliasfor one of those). Again,
according to the SQL standard, thisisthe only way to convert between type xm and character types,
but PostgreSQL also allows you to simply cast the value.

The | NDENT option causes the result to be pretty-printed, while NO | NDENT (which is the default)
just emits the original input string. Casting to a character type likewise produces the original string.

When a character string value is cast to or from type xm without going through XM_LPARSE or
XMLSERI ALI ZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the
“XML option” session configuration parameter, which can be set using the standard command:

SET XML OPTION { DOCUMENT | CONTENT };

or the more PostgreSQL -like syntax

SET xm option TO { DOCUMENT | CONTENT };

The default is CONTENT, so all forms of XML data are allowed.

8.13.2. Encoding Handling

Care must be taken when dealing with multiple character encodings on the client, server, and in
the XML data passed through them. When using the text mode to pass queries to the server and
guery results to the client (which isthe norma mode), PostgreSQL converts all character data passed
between the client and the server and vice versa to the character encoding of the respective end; see
Section 23.3. Thisincludes string representations of XML values, such asin the above examples. This
would ordinarily mean that encoding declarations contained in XML data can become invalid as the
character datais converted to other encodings while traveling between client and server, because the
embedded encoding declaration is not changed. To cope with this behavior, encoding declarations
contained in character strings presented for input to thexm type are ignored, and content is assumed
to bein the current server encoding. Consequently, for correct processing, character strings of XML
data must be sent from the client in the current client encoding. It is the responsibility of the client
to either convert documents to the current client encoding before sending them to the server, or to
adjust the client encoding appropriately. On output, values of type xm will not have an encoding
declaration, and clients should assume all datais in the current client encoding.

When using binary mode to pass query parametersto the server and query results back to the client, no
encoding conversion is performed, so the situation is different. In this case, an encoding declaration
in the XML data will be observed, and if it is absent, the data will be assumed to be in UTF-8 (as
required by the XML standard; note that PostgreSQL does not support UTF-16). On output, data will
have an encoding declaration specifying the client encoding, unless the client encoding is UTF-8, in
which case it will be omitted.

Needless to say, processing XML data with PostgreSQL will be less error-prone and more efficient
if the XML data encoding, client encoding, and server encoding are the same. Since XML data is
internally processed in UTF-8, computations will be most efficient if the server encoding is also
UTF-8.

Caution

Some XM _L-related functions may not work at all on non-ASCII datawhen the server encoding
isnot UTF-8. Thisisknown to be anissuefor xmi t abl e() and xpat h() in particular.

183

Data Types

8.13.3. Accessing XML Values

The xm datatype is unusual in that it does not provide any comparison operators. This is because
thereisno well-defined and universally useful comparison algorithm for XML data. One consequence
of thisis that you cannot retrieve rows by comparing an xm column against a search value. XML
values should therefore typically be accompanied by a separate key field such asan ID. An aternative
solution for comparing XML vauesisto convert them to character stringsfirst, but note that character
string comparison has little to do with a useful XML comparison method.

Since there are no comparison operators for the x data type, it is not possible to create an index
directly on a column of thistype. If speedy searchesin XML data are desired, possible workarounds
include casting the expression to a character string type and indexing that, or indexing an XPath
expression. Of course, the actual query would have to be adjusted to search by the indexed expression.

The text-search functionality in PostgreSQL can also be used to speed up full-document searches of
XML data. The necessary preprocessing support is, however, not yet available in the PostgreSQL
distribution.

8.14. JSON Types

JSON data types are for storing JSON (JavaScript Object Notation) data, as specified in RFC